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Chapter 0

Background & Review

0.1 Algebra and Pre-Calculus

0.1.1 Sets
Definition. A setA is a collection of distinct elements. Those elements can be anything, like numbers,
functions, and even other sets.

We can define a set by giving its elements, like A = {−2, 5, 3} or by describing its properties, like
A = {x | x > 0} where the vertical bar means “such that”. If an object x is a member of the set A,
we write x ∈ A.

A set A is called a subset of a set B if every element of A is also an element of B. We can write this
as A ⊆ B. For example, {7, 10, 16} ⊆ {5, 6, 7, 9, 10, 11, 16}. Note that this relation can be strict if
there exists at least one element in B that is not also an element of A. Some common sets and their
informal definitions are given below:

Set Name Symbol Informal Definition
Natural numbers N {1, 2, 3, . . . }

Integers Z {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
Rational numbers Q {m

n
| m,n ∈ Z and n ̸= 0}

Real numbers R Any number on the number line1

This means that N ⊂ Z ⊂ Q ⊂ R.

There are several common operations that can be performed on sets. The union A∪B of two sets A
and B is the set of all elements that are elements of A or of B. Similarly, the intersection A ∩ B of
two sets A and B is the set of all elements that are also elements of both A and B.

Example. If A = {
√
2, 2, 5, 8} and B = {−9, 8, 2.3}, what are A ∪ B and A ∩B?
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To find the union, we combine the sets, making sure to include any repeated element only once:
A ∪B = {−9,

√
2, 2, 2.3, 5, 8}.

Then, since the only element both sets share is 8, we also have
A ∩ B = {8}.

0.1.2 Intervals
Definition. We call a subset I of R an interval if, for any a, b ∈ I and x ∈ R such that a ≤ x ≤ b,
then x ∈ I .
We can write an interval more simply using the notation [a, b], which is equivalent to {x ∈ R | a ≤
x ≤ b}. This is called a closed interval, and to make the inequalities strict, we can also define an open
interval by using parantheses instead of square brackets.

In addition, we can mix the two to create half-open intervals, where one inequality is strict and the
other isn’t. For instance, (2, 5] refers to the set {x ∈ R | x < 2 ≤ 5} Finally, if the interval is
unbounded in either direction, we use the notations−∞ and∞ to indicate that there is no minimum
or maximum, respectively.
Example. Is 8 ∈ (−∞, 4) ∪ [8, 100)?

Since 8 ≤ 8 < 100 is a true statement, 8 ∈ [8, 100). Since we are taking the union with an-
other set, all of the members of the right interval will also be members of the union of intervals.
Therefore, the statement is true.

0.1.3 Functions
Definition. A function f is a rule between a pair of sets, denoted f : D → C, that assigns values
from the first set, the domain D, to the second set, the codomain C.
We call the subset of the codomain C that constitutes all values f can actually attain the range R ⊆
C. Note that when we draw a graph of a function, all we are doing is drawing all ordered pairs
{(x, f(x)) | x ∈ D}.
Example. Find the domain of the following function:

f(x) =
1

(1− x)
√
5− x2

We know that n
0
is undefined for all n ∈ R and √x is only defined for x ≥ 0. The first condition

applies to the first term in the denominator and both conditions apply to the second, giving us
(1− x) ̸= 0 and 5− x2 > 0

The first condition implies x ̸= 1 while the second implies |x| <
√
5. Putting these together, we

find that the domain is
{x | x ̸= 1, |x| <

√
5} or (−

√
5, 1) ∪ (1,

√
5)

2



We can also compose two functions, such that the ouput of one function is the input of another:

(f ◦ g)(x) = f(g(x)).

Definition. A function g is called an inverse function of f if f(g(x)) = x for all x in the domain of
g and g(f(x)) for all x in the domain of f. We write this as g = f−1.

One common algorithm for finding an inverse function is to set y = f(x), substitute all x’s for y’s,
and then solve for y.

Example. Find the inverse function of

f(x) =
5x+ 2

4x− 3
.

We first make the substitutions to set up the algorithm:

y =
5x+ 2

4x− 3
becomes x =

5y + 2

4y − 3
.

After multiplying both sides by the denominator and simplifying, we have

4xy − 3x = 5y + 2

−3x− 2 = y(−4x+ 5)

y = f−1(x) =
3x+ 2

4x− 5
.

We say that a function f is even if it satisfies f(−x) = f(x) for all x ∈ D. Likewise, we say that a
function f is odd if it satisfies f(−x) = −f(x) for all x ∈ D. Geometrically, we can see that the
graph of an even function is symmetric with respect to the y-axis, while the graph of an odd function
is symmetric with respect to the origin.

Example. Is f(x) = 2x− x2 even, odd, or neither?

f(−x) = 2(−x)− (−x)2 = −2x− x2

Since f(−x) ̸= f(x) and f(−x) ̸= −f(x), the function is neither even nor odd.

0.1.4 Complex Numbers
Definition. i is called the imaginary unit. It’s defined by i2 = −1.

The set of complex numbers (C) is an extension of the real numbers. Complex numbers have the
form z = α+βi, whereα and β are real numbers. Theα part of z is called the real part, soℜ(z) = α.
The β part of z is called the imaginary part, so ℑ(z) = βi.

3



Often, complex numbers are visualized as points or vectors in a 2D plane, called the complex plane,
where α is the x-component, and β is the y-component. Thinking of complex numbers like points
helps us define the magnitude of complex numbers and compare them. Since a point (x, y) has a
distance

√
x2 + y2 from the origin, we can say the magnitude of z, |z| is

√
α2 + β2. Thinking of

complex numbers like vectors helps us understand adding two complex numbers, since you just add
the components like vectors.

A common operation on complex numbers is the complex conjugate. The complex conjugate of
z = α + βi is z = α− βi. z and z are called a conjugate pair.

Conjugate pairs have the following properties. Let z, w ∈ C.

z ± w = z ± w

zw = zw

z = z ⇔ z ∈ R
zz = |z|2 = |z|2

z = z

zn = zn

z−1 =
z

|z|2

0.1.5 Factoring Polynomials
We want to break up a polynomial like f(x) = a0 + a1x

1 + . . . anx
n into linear factors so that

f(x) = c(x − b1) · . . . · (x − bn). This form makes it simple to see that the roots of f , solutions to
f(x) = 0, are x = b1 . . . bn.

For quadratics, f(x) = ax2 + bx + c, there exists a simple formula that will give us both roots, the
quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

We can see that when b2− 4ac < 0, like for f(x) = x2+5x+10, we will get complex roots α±βi.
For any polynomial, these roots come in pairs, so if α + βi is a root, then so is α − βi. This means
that every conjugate pair α ± βi has a quadratic equation with those roots. Sometimes we will not
factor quadratics with complex roots into linear terms.

Although there do exist explicit formulas for finding roots for cubic (degree 3) and quartic (degree 4)
equations, they are too long and not useful enough to memorize. When working by hand, we instead
use other tricks to find roots.

There are a few useful tricks that can help. If the polynomial doesn’t have a constant term, then 0 is
a root. If all the coefficients sum to 0, then 1 is a root. For certain polynomials with an even number
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of terms, like all cubics of the form ax3 + bx2 + cax+ cb we can factor out a term from the first two
and last two terms to get x2(ax + b) + c(ax + b) = (ax + b)(x2 + c). For other polynomials, we
might just try guessing and checking values. However, we need a more efficient way that works in
general.

Since we are looking to find linear factors f(x) = (x − b1) · . . . · (x − bn), we can see that the
constant term in the polynomial is the product of the roots b1 . . . bn. In fact, since the coefficients of
polynomials are completely determined by the roots and the leading coefficient, all the coefficients
are sums and products of roots. You might remember when factoring quadratics that the coefficient
of x term is the sum of the two roots. These rules are called Vieta’s formulas.

So, if we have the constant term, we can check all of its integer factors to see if any are roots. For
each root, we can divide, using a technique like synthetic division, to continue finding the rest of the
roots. This method is especially useful on tests because the roots tend to be integers.

Example. Factor the polynomial x5 + x4 − 2x3 + 4x2 − 24x.

We can immediately see that there is no constant term, so x = 0 is a root. Now we need to work on
factoring x4 + x3 − 2x2 + 4x− 24.
The factors of -24 are: -24, -12, -8, -6, -4, -3, -2, -1, 1, 2, 3, 4, 6, 8, 12, and 24. Starting from roots
close to 0 and working outwards, we find that x = 2 is a root. So, we synthetic divide like so

x = 2 | 1 1 -2 4 -24
↓ 2 6 8 24
1 3 4 12 | 0

to see that now we need to work on factoring x3 + 3x2 + 4x + 12. x3 + 3x2 + 4x + 12 = x2(x +
3) + 4(x + 3) = (x + 3)(x2 + 4), so x = −3 is a root, and we need to work on factoring x2 + 4.
x2 + 4 has two complex roots ±2i, so we’ll leave it as a quadratic.

x5 + x4 − 2x3 + 4x2 − 24x = x(x− 2)(x− 3)(x2 + 4)

0.1.6 Trig Functions & The Unit Circle
Imagine a circle of radius 1 centered at the origin that we’ll call the unit circle. The x and y coordi-
nates of a point on the unit circle are completely determined by the angle θ in radians between the
x-axis and a line from the origin to the point.

The function cos θ tells us x-coordinate of the point, while sin θ tells us the y-coordinate of the point.
The function tan θ = sin θ

cos θ tells us the slope of the line from the origin to the point. Most of the trig
functions have geometric interpretations as shown below. The most used ones are sin, cos, tan = sin

cos ,
cot = cos

sin , csc = 1
sin , and sec = 1

cos .
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Figure 1: Wikipedia - Unit circle

We can also think about the inverses of these trig functions. These are either notated with a -1
exponent on the function, or the prefix arc in front of the function name. Many of these functions are
only defined on a part of the domain [0, 2π]. Below is a table of the inverse trig functions and their
domains.

Function Domain
arcsin [−1, 1]
arccos [−1, 1]
arctan (−∞,∞)
arccot (−∞,∞)
arccsc (−∞,−1] ∪ [1,∞)
arcsec (−∞,−1] ∪ [1,∞)

0.1.7 Trig Identities
As we could see in Figure 0.1.6, sin and cos form a right triangle with hypotenuse 1. So, using the
Pythagorean Theorem,

sin2 θ + cos2 θ = 1.

By dividing by sin2 or cos2, we can also get

1 + cot2 θ = csc2 θ and tan2 θ + 1 = sec2 θ.

Together, these 3 identities are called the Pythagorean Identities.

6
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We can also relate functions and co-functions.
xxx(θ) = coxxx

(π
2
− θ
)
.

Some of the most useful and used identities are the sum and difference.
sin (α± β) = sinα cos β ± cosα sin β
cos (α± β) = cosα cos β ∓ sinα sin β

tan (α± β) =
tanα± tan β
1∓ tanα tan β

sinα± sin β = 2 sin
(
α± β

2

)
cos
(
α∓ β

2

)
cosα + cos β = 2 cos

(
α + β

2

)
cos
(
α− β

2

)
cosα− cos β = −2 sin

(
α + β

2

)
sin
(
α− β

2

)

0.1.8 Exponentials & Logarithms
Definition. e is the base of the natural logarithm. It’s defined by the limit

e = lim
n→∞

(
1 +

1

n

)n

.

expx = ex and lnx are inverse functions of each other such that
elnx = x and ln ex = x.

Just like other exponentials, the normal rules for adding, subtracting, andmultiplying exponents apply:

exey = ex+y, e
x

ey
= ex−y, and (ex)k = exk.

Similar rules apply for logarithms:

lnx+ ln y = lnxy, ln x− ln y = ln
(
x

y

)
, and ln

(
ab
)
= b ln a.

We can also write a logarithm of any base using natural logarithms:

logb a =
ln a
ln b .

e is also unique in that it is the only real number a satisfying the equation
d
dxa

x = ax,

meaning ex is its own derivative.
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0.1.9 Partial Fractions
If we have a function of two polynomials f(x) = P (x)

Q(x)
, it’s often easier to break this quotient into

a sum of parts where the denominator is a linear or quadratic factor and the numerator is always a
smaller degree than the denominator.

Example.
2x− 1

x3 − 6x2 + 11x− 6
=

1/2

x− 1
+

−3

x− 2
+

5/2

x− 3
.

One natural way to find these small denominators comes from the linear factors of the denominator
where we keep quadratics with complex roots. This way, when making a common denominator, we
get back the original big denominator. However, there are a few special cases we have to take care
of.

Linear Factors

This is the the most basic type where the degree of the numerator is less than the degree of the
denominator and the denominator factors into all linear factors with no repeated roots. In this case
we can write

P (x)

Q(x)
=

A1

(x− a1)
+ . . .+

An

(x− an)
.

Multiplying each side by Q(x),

P (x) = A1(x− a2) . . . (x− an) + . . .+ An(x− a1) . . . (x− an−1).

We can then find each Ai by evaluating both sides at x = ai, since every term except the ith has an
(x− ai) factor that will go to 0. So,

Ai =
P (ai)

(x− ai) . . . (x− ai−1)(x− ai+1) . . . (x− an)
.

Example. Find the partial fraction decomposition of the following expression:

2x− 1

x3 − 6x2 + 11x− 6
.

Factoring,
x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3).

So,
2x− 1

x3 − 6x2 + 11x− 6
=

A1

x− 1
+

A2

x− 2
+

A3

x− 3
.

Multiplying each side by the denominator,

2x− 1 = A1(x− 2)(x− 3) + A2(x− 1)(x− 3) + A3(x− 1)(x− 2).
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At x = 1,
1 = A1(1− 2)(1− 3) =⇒ A1 =

1

2
.

At x = 2,
3 = A2(2− 1)(2− 3) =⇒ A2 = −3.

At x = 3,
5 = A3(3− 1)(3− 2) =⇒ A3 =

5

2
.

So,
2x− 1

x3 − 6x2 + 11x− 6
=

1/2

x− 1
+

−3

x− 2
+

5/2

x− 3
,

just as was shown in the previous example.

Repeated Linear Factors

If Q(x) has repeated roots, it factors into

Q(x) = R(x)(x− a)k, k ≥ 2 and R(a) ̸= 0.

When making the common denominator for each repeated root of multiplicity k, we do

P (x)

R(x)(x− a)k
= (Decomposition of R(x)) +

A1

x− a
+ . . .+

Ak

(x− a)k
.

You would then multiply each side by the denominator like in the linear factors case and solve for
the coefficients. The only additional difficulty is that you might have to use previous results or solve a
system of linear equations to get some of the constants.

Example. Find the partial fraction of the following expression:

x2 + 5x− 6

x3 − 7x2 + 16x− 12
.

Factoring,
x3 − 7x2 + 16x− 12 = (x− 3)(x− 2)2.

So,
x2 + 5x− 6

x3 − 7x2 + 16x− 12
=

A1

x− 3
+

A2

x− 2
+

A3

(x− 2)2
.

Multiplying each side by the denominator,

x2 + 5x− 6 = A1(x− 2)2 + A2(x− 2)(x− 3) + A3(x− 3).

At x = 2,
8 = A3(2− 3) =⇒ A3 = −8.
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At x = 3,
18 = A1(3− 2)2 =⇒ A1 = 18.

Now we’ll use our results for A1 and A3 to find A2 using a value for x that isn’t 2 or 3 so the A2 term
doesn’t become 0. A good choice is x = 0.
At x = 0,

−6 = 18(0− 2)2 + A2(0− 2)(0− 3) +−8(0− 3) =⇒ A2 = −17.

So,
x2 + 5x− 6

x3 − 7x2 + 16x− 12
=

18

x− 3
− 17

x− 2
− 8

(x− 2)2
.

Quadratic Factors

If a quadratic doesn’t have real roots, then we have a quadratic factor. Here, we’ll assume that the
quadratic factor isn’t repeated. So, Q(x) = R(x)(ax2 + bx + c), b2 − 4ac < 0, and R(x) is not
evenly divisible by ax2 + bx+ c. In this case, we say

P (x)

R(x)(ax2 + bx+ c)
= (Decomposition of R(x)) +

A1x+B1

ax2 + bx+ c
.

We then solve for the constants in the numerator, possibly having to solve a system of equations or
using previous results and less convenient values for x.

Example. Find the partial fraction decomposition of the following expression:

6x2 + 21x+ 11

x3 + 5x2 + 3x+ 15
.

Factoring,
x2 + 5x2 + 3x+ 15 = (x+ 5)(x2 + 3).

So,
6x2 + 21x+ 11

x3 + 5x2 + 3x+ 15
=

A1

x+ 5
+

A2x+B2

x2 + 3
.

Multiplying each side by the denominator,

6x2 + 21x+ 11 = A1(x
2 + 3) + (A2x+B2)(x+ 5).

At x = −5,
56 = 28A1 =⇒ A1 = 2.

Now we’ll use the previous result and another value for x. We can use x = 0 to not have to worry
about the A2 term. At x = 0,

11 = 2(3) + (B2)(5) =⇒ B2 = 1.
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Now we’ll use the previous 2 results to find A2. x = 1 is a good choice to keep the numbers small.
At x = 1,

38 = 2(1 + 3) + (A2 + 1)(6) =⇒ A2 = 4.

So,
6x2 + 21x+ 11

x3 + 5x2 + 3x+ 15
=

2

x+ 5
+

4x+ 1

x2 + 3
.

Repeated Quadratic Factors

If a quadratic factor that can’t be broken into linear factors is repeated, then we can write Q(x) =
R(x)(ax2 + bx + c)k, k ≥ 0, and R(x) is not divisible by (ax2 + bx + c)k. Now we have to do a
combination of what we did for repeated linear factors and quadratic factors. We say

P (x)

R(x)(ax2 + bx+ c)k
= (Decomposition of R(x)) +

A1x+B1

ax2 + bx+ c
+ . . .+

Akx+Bk

(ax2 + bx+ c)k
.

We then solve for the coefficients in the numerator.

Example. Find the partial fraction decomposition of 3x4−2x3+6x2−3x+3
x5+3x4+4x3+12x2+4x+12

.

Factoring,
x5 + 3x4 + 4x3 + 12x2 + 4x+ 12 = (x+ 3)(x2 + 2)2.

So,
3x4 − 2x3 + 6x2 − 3x+ 3

x5 + 3x4 + 4x3 + 12x2 + 4x+ 12
=

A1

x+ 3
+

A2x+B2

x2 + 2
+

A3x+B3

(x2 + 2)2
.

Multiplying each side by the denominator,

3x4 − 2x3 + 6x2 − 3x+ 3 = A1(x
2 + 2)2 + (A2x+B2)(x

2 + 2)(x+ 3) + (A3x+B3)(x+ 3).

At x = −3,
363 = 121A1 =⇒ A1 = 3.

Now, we’ll use our result for A1 and pick a value for x that minimizes the number of things we need
to solve for. We’ll have to solve a linear system with 4 unknowns, so we’ll need up to 4 values. At
x = 0,

3 = 3(2)2 +B2(2)(3) + B3(3) =⇒ 2B2 +B3 = −3.

At x = 1,

7 = 3(3)2 + (A2 +B2)(3)(4) + (A3 +B3)(4) =⇒ 3A2 + A3 + 3B2 +B3 = −5.

At x = −1,

17 = 3(3)2 + (−A2 +B2)(3)(2) + (−A3 +B3)(2) =⇒ −3A2 − A3 + 3B2 +B3 = −5.
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At x = 2,

53 = 3(6)2 + (2A2 +B2)(6)(5) + (2A3 +B3)(5) =⇒ 12A2 + 2A3 + 6B2 +B3 = −11.

Now we have the following system of equations:
0A2 + 0A3 + 2B2 +B3 = −3

3A2 + A3 + 3B2 +B3 = −5

−3A2 − A3 + 3B2 +B3 = −5

12A2 + 2A3 + 6B2 +B3 = −11

.

Solving,
A2 = 0, A3 = 0, B2 = −2, and B3 = 1.

So,
3x4 − 2x3 + 6x2 − 3x+ 3

x5 + 3x4 + 4x3 + 12x2 + 4x+ 12
=

3

x+ 3
− 2

x2 + 2
+

1

(x2 + 2)2
.

Improper Fractions

If the degree of the numerator is greater than or equal to the degree of the denominator, we have a
case of improper fractions. In this case, we have to do polynomial long division to get a quotient and
remainder and then decompose the remainder if necessary. So,

P (x)

Q(x)
= R(x) +

S(x)

Q(x)
.

Example. Find the partial fraction decomposition of the following expression:

x3 + 3

x2 − 2x− 3
.

First we do polynomial long division to find that

x3 + 3

x2 − 2x− 3
= x+ 2 +

7x+ 9

x2 − 2x− 3
.

Now that the numerator is of a lesser degree than the denominator, we can decompose it normally.

x2 − 2x− 3 = (x− 3)(x+ 1).

So,
7x+ 9

x2 − 2x− 3
=

A1

x− 3
+

A2

x+ 1
.

Multiplying each side by the denominator,

7x+ 9 = A1(x+ 1) + A2(x− 3).
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At x = −1,
2 = −4A2 =⇒ A2 =

−1

2
.

At x = 3,
30 = 4A1 =⇒ A1 =

15

2
.

So,
x3 + 3

x2 − 2x− 3
= x+ 2 +

15/2

x− 3
+

−1/2

x+ 1
.

0.2 Single Variable Calculus

0.2.1 Derivatives and Integrals
Derivatives

The derivative of a function y = f(x), notated f ′(x), gives the slope of the tangent line to f at x.

Definition.
f ′(x) = lim

h→0

f(x+ h)− f(x)

h

Below are some properties of the derivative. Let f and g be functions of x and p a scalar.

Linearity
(pf ± g)′ = pf ′ ± g′

Product Rule
(fg)′ = f ′g + fg′

Quotient Rule (
f

g

)′

=
f ′g − fg′

g2

Chain Rule
(f ◦ g)′ = (f ′ ◦ g) · g′

Power Rule
dx
dp

x

= pxp−1, p ̸= 0

Exponent Rule
dx
dp

x

= px ln p, p > 0
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The Power Rule and Exponent Rule are two cases of the same rule

d
dxf

g = gf g−1f ′ + f g ln fg′.

Using the definition of the derivative and these rules, we can find the derivatives to some common
functions.

d
dxp = 0 d

dxe
x = ex

d
dx lnx = 1

x
d
dx sinx = cosx

d
dx cosx = − sinx d

dx tanx = sec2 x

Integrals

The definite integral of a function f(x) from x = a to x = b where a ≤ b is the area between f(x)
and the x-axis bounded by the lines x = a and x = b where area above the x-axis is positive, and
area below the x-axis is negative.

Definition. ∫ b

a

f(x)dx = lim
h→0

b−a
h∑

n=1

f(a+ (n− 1)h) · h.

We also define an indefinite integral, or antiderivative of f(x), notated F (x) where

F ′(x) = f(x) =⇒
∫

f(x)dx = F (x).

Note that there are infinitely many such functions F , since adding a constant to F does not affect its
derivative. To notate this, we add a constant C to the indefinite integral. Given an initial condition
for f , we can solve for C.

Below are some properties of the integral. Let f and g be functions of x and p, a, b, and c where
a < b < c, and f and g are continuous on the closed interval [a, c].

Linearity ∫
(pf ± g)dx = p

∫
fdx±

∫
gdx

Flipped Bounds ∫ b

a

fdx = −
∫ a

b

fdx

Union of Intervals ∫ b

a

fdx+

∫ c

b

fdx =

∫ c

a

fdx
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Power Rule ∫
xndx =

xn+1

n+ 1
+ C, n ̸= −1

U-Substitution ∫
(f ′ ◦ g) g′dx = f ◦ g + C

Integration by Parts ∫
f ′gdx = fg −

∫
fg′dx

Fundamental Theorem of Calculus
d
dx

∫ x

a

f(s)ds = f(x)

Using the definition of the integral and the above rules, we can find the indefinite integral of some
common functions. ∫

1

x
dx = ln

∣∣x∣∣+ C∫
sinxdx = − cosx+ C∫
cosxdx = sinx+ C∫
tanxdx = − ln

∣∣ cosx∣∣+ C

0.2.2 Taylor Series
A Taylor series as a way of approximating a function about a point x = a using polynomials. The
first approximation just keeps the same value at x = a, the second approximation keeps the same
value and first derivative at x = a, etc.

Definition.

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n + . . .
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If we approximate a function about x = 0, we call this a Maclaurin series. Below are some common
Maclaurin series, and their radii of convergence if applicable.

ex = 1 + x+
x2

2!
+

x3

3!
+ . . .

sinx = x− x3

3!
+

x5

5!
− . . .

cosx = 1− x2

2!
+

x4

4!
− . . .

1

1 + x
= 1− x+ x2 − . . . , where

∣∣x∣∣ < 1

ln (1 + x) = x− x2

2
+

x3

3
− . . . , where

∣∣x∣∣ < 1

Euler’s Identity

Let’s see what happens when we look at the Maclaurin series for eix.

eix = 1 + (ix) +
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
. . .

= 1 + ix− x2

2!
− i

x3

3!
+

x4

4!
+ i

x5

5!
− . . .

=

(
1− x2

2!
+

x4

4!
− . . .

)
+ i

(
x− x3

3!
+

x5

5!
− . . .

)
.

The two expressions in parenthesis are exactly the Maclaurin series for cosx and sin x. So,

eix = cosx+ i sinx.

In the case that x = π,
eiπ = cos π + i sin π = −1 + 0.

So,
eiπ + 1 = 0.

0.3 Vectors and Matrices
0.3.1 Vectors
A vector is a quantity with both direction and magnitude. One can think of it as a directed line seg-
ment. In multivariable calculus, we mostly will work with vectors in R2 and R3, but vectors can exist
in other dimensions.
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Numerical (scalar) quantities have vector analogues, many of which show up in physics. Speed be-
comes velocity, distance becomes displacement, and mass becomes weight.

Say we have a 2D vector, v⃗ = ⟨vx, vy⟩.

Figure 2: The x and y components of a vector v

Its length, also called magnitude or norm, is notated
∣∣∣∣v⃗∣∣∣∣ = √

v2x + v2y . This pattern of the norm
being equal to the square-root of the sum of the squares of the vector’s components continues into
higher dimensions.

The angle a 2D vector forms with the horizontal axis is θ = tan−1
(

vy
vx

)
. There is not a useful ver-

sion of this formula in higher dimensions. Using θ and
∣∣∣∣v⃗∣∣∣∣, we can see that vx =

∣∣∣∣v⃗∣∣∣∣ cos θ and
vy =

∣∣∣∣v⃗∣∣∣∣ sin θ.
Vectors can be added and subtracted from each other in a way that the result is another vector. We do
this numerically by adding the corresponding components of each vector. For example, if a⃗ = ⟨1, 3⟩
and b⃗ = ⟨4, 7⟩, then a⃗+ b⃗ = ⟨1 + 4, 3 + 7⟩ = ⟨5, 10⟩ and b⃗− a⃗ = ⟨4− 1, 7− 3, ⟩ = ⟨3, 4⟩.
Visually, you can think of v⃗+ w⃗ as the vector connecting the tail of v⃗ with the tip of w⃗ where the tail
of v⃗ is on the tip of w⃗.
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Figure 3: Visualization of v⃗ + w⃗ and v⃗ − w⃗

We can also multiply vectors by scalars and get another vector as a result. We do this by multiplying
each component of the vector by the scalar. This has the effect of stretching or shrinking the vector
and possibly changing the vector’s direction if the scalar is negative.

Figure 4: A vector v⃗ scaled by different constants

A unit vector is any vector with magnitude 1. Rather than using an arrow like for other vectors, unit
vectors are notated with a carat (∧) over top, like î, which is read as “i hat”. We can transform any
vector with non-zero magnitude into a unit vector by dividing the vector by its norm. This normalized
vector will point in the same direction as the original vector.

It is common in mathematics for î = ⟨1, 0, 0⟩ to be the unit vector in the x-direction, ĵ = ⟨0, 1, 0⟩
to be the unit vector in the y-direction, and k̂ = ⟨0, 0, 1⟩ to be the unit vector in the z-direction.
Together, î, ĵ, and k̂ are called the standard basis vectors because all other vectors in R3 can be
written as linear combination of these.
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Figure 5: The standard basis vectors î, ĵ, and k̂

0.3.2 Dot Products
A dot product is a way of multiplying two vectors so that the result is a scalar. a⃗ · b⃗ =

∣∣∣∣⃗a∣∣∣∣∣∣∣∣⃗b∣∣∣∣ cos θ
where θ is the angle between a⃗ and b⃗. One way to think of the dot product is as a measure of
how much two vectors point in the same direction. We can also show using the law of cosines that
a⃗ · b⃗ = a1b1 + a2b2 + ... + anbn. Knowing the lengths of two vectors and their dot product we can
calculate the angle between them as

θ = arccos
(

a⃗ · b⃗∣∣∣∣⃗a∣∣∣∣∣∣∣∣⃗b∣∣∣∣
)
.

Figure 6: Two vectors and the angle between them

Although similar to scalar multiplication, dot products have some properties that set them apart.
Commutative

a⃗ · b⃗ = b⃗ · a⃗
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the same as scalar multiplication.

Distributive
a⃗ ·
(⃗
b+ c⃗

)
= a⃗ · b⃗+ a⃗ · c⃗

the same as scalar multiplication.

NOT Associative
(
a⃗ · b⃗

)
· c⃗ is a nonsense expression. However, like scalar multiplication, dot

products are scalar associative.

(c · a⃗) · b⃗ = a⃗ ·
(
c · b⃗
)

0.3.3 Cross Products
A cross product is a way of multiplying two vectors so that the result is a vector. Although the cross
product technically only works for 3D vectors, we will first look a a “fake” 2D version to build an
intuition.

a⃗× b⃗ = a1b1 − a2b2.

This “fake” 2D cross product gives the area of the parallelogram spanned by a⃗ and b⃗.

a⃗× b⃗ =
∣∣∣∣⃗a∣∣∣∣∣∣∣∣⃗b∣∣∣∣ sin θ

where θ is the angle between a⃗ and b⃗. Another way to think of the magnitude of the cross product,
both in 2D and 3D, is as a measure of how perpendicular two vectors are.

Figure 7: Visualization of the cross product

In 3D, a⃗× b⃗ is a vector, and similar to the 2D case, the magnitude of a⃗× b⃗ is equal to the area of the
parallelogram spanned by a⃗ and b⃗.

a⃗× b⃗ = ⟨a2b3 − b2a3, a3b1 − b3a1, a1b2 − b1a2⟩
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and ∣∣∣∣⃗a× b⃗
∣∣∣∣ = ∣∣∣∣⃗a∣∣∣∣∣∣∣∣⃗b∣∣∣∣ sin θ

where θ is the angle between a⃗ and b⃗. Each component of a⃗ × b⃗ gives the area of the parallelogram
spanned by a⃗ and b⃗ in some plane: The x-component of a⃗ × b⃗ gives the area in the yz-plane (x = 0
plane). a⃗× b⃗ is perpendicular, also called “normal,” to the plane containing a⃗ and b⃗. It’s direction, is
determined by the right hand rule.

This cross product table of the standard basis vectors is useful for providing some insight into the
properties of the cross product.

−→row×−→col î ĵ k̂

î 0 k̂ −ĵ

ĵ −k̂ 0 î

k̂ ĵ −î 0

NOT Commutative, but is antisymmetric

a⃗× b⃗ = −
(⃗
b× a⃗

)
Scalar Associative

(c · a⃗)× b⃗ = a⃗×
(
c · b⃗
)

Distributive
a⃗×

(⃗
b× c⃗

)
= a⃗× b⃗+ a⃗× c⃗

One can also think of the cross product as the determinant of a matrix.

a⃗× b⃗ = det

 î ĵ k̂
a1 a2 a2
b1 b2 b3


Now that we have defined the dot product and cross product, we can put the two together as the scalar
triple product, which gives the volume of the parallelepiped spanned by a⃗, b⃗, and c⃗.

a⃗ ·
(⃗
b× c⃗

)
= det

a1 a2 a2
b1 b2 b3
c1 c2 c3


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Figure 8: Scalar triple product gives volume of parallelepiped spanned by three vectors.

0.3.4 Matrices
Matrices are an array of mathematical objects, most often numbers. They are often used to represent
linear transformations between two spaces and systems of linear equations. We denote the size of a
matrix by saying the number of rows followed by the number of columns.

Example. Below is a 2 x 4 matrix. [
1 3 2 −1
−5 7 3 0

]

0.3.5 Types of Matrices
Below is a list of different types of matrices and their special properties.

• A square matrix has the same number of rows as columns.1 3 7
0 2 −1
2 7 9


• Row vectors have one column. Column vectors have one row.

[
1 3 0

]
,

13
0


• Upper triangular matrices have all 0’s below the main diagonal. Lower triangular matrices have
all 0’s above the main diagonal. 1 3 7

0 2 −1
0 0 9

 ,
1 0 0
0 2 0
2 7 9


22



• Diagonal matrices are both upper and lower triangular. They only have non-zero entries on the
main diagonal. 1 0 0

0 2 0
0 0 9


• The identity matrix is one of the most common matrices. It is square, diagonal, and has all 1’s
on the main diagonal. It’s the multiplicative identity for matrices.

I3 =

1 0 0
0 1 0
0 0 1


• The inverse matrix of A, A−1, is such that

A−1A = AA−1 = I.

• The transpose matrix of A, AT , is where the rows and columns of A are swapped.

A =

[
1 3 2 −1
−5 7 3 0

]
=⇒ AT =


1 −5
3 7
2 3
−1 0


0.3.6 Row Reduction
Row reduction is a way of solving a system of linear equations by representing the system as a matrix
and altering the rows of the matrix until we get as close as possible to an identity matrix.

Below is a list of legal row operations. Doing these does not change the solution to the system of
equations.

• Multiplying or dividing each item in a row by a scalar,1 3 7
0 2 −1
2 7 9

 R2=R2/2→

1 3 7
0 1 −1/2
2 7 9

 .

• Adding a multiple of one row to another row,1 3 7
0 2 −1
2 7 9

 R3=R3−2R1→

1 3 7
0 2 −1
0 1 −5

 .
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• Swapping two rows, 1 3 7
0 2 −1
0 1 −5

 swap R2, R3→

1 3 7
0 1 −5
0 2 −1

 .

Using these rules, we solve a system of linear equations using a process called Gauss-Jordan Elimi-
nation.

A system may have a contradiction, meaning no solution exists. This will look like a row of 0’s on
the left and a non-zero term on the far right of the row.[

1 0 1
0 1 0

]
=⇒ No solution

A system may be underdetermined, meaning one or more variables can be any number. This will
look a non-zero column on the left without a leading 1 (bolded).


1 -2 0 0 -3 2
0 0 1 0 1 5
0 0 0 1 2 4
0 0 0 0 0 0

 =⇒


x1

x2

x3

x4

x5

 =


2
0
5
4
0

+ α


2
1
0
0
0

+ β


3
0
−4
−2
1

 , α, β ∈ R.

Example. Solve the following linear system of equations using row reduction.1 3 0
0 2 5
2 7 7

 x⃗ =

 4
13
16


 1 3 7 0

0 2 −1 5
2 7 9 7

 R3=R3−2R1→

 1 3 7 0
0 2 −1 5
0 1 −5 7

 swap R2, R3→

 1 3 7 0
0 1 −5 7
0 2 −1 5


R3=R3−2R2→

 1 3 7 0
0 1 −5 7
0 0 9 −9

 R3=R3/9→

 1 3 7 0
0 1 −5 7
0 0 1 −1

 R2=R2+5R3→

 1 3 7 0
0 1 0 2
0 0 1 −1


R1=R1−7R3→

 1 3 0 7
0 1 0 2
0 0 1 −1

 R1=R1−2R2→

 1 0 0 1
0 1 0 2
0 0 1 −1

 .

So,

x⃗ =

 1
2
−1

 .
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0.3.7 Determinants
The determinant of a matrix is a signed number that tells by howmuch the transformation represented
by a matrix scales volumes in a space. The number is negative if the space was “flipped” during a
transformation. The number is zero if the dimension of the output space is less than that of the input
space.

The determinant is only defined for square matrices. It’s easiest to understand the definition of a
determinant recursively.

det [a] = |a| = a

det
[
a b
c d

]
=

a b
c d

= ad− bc.

We can define aij as the entry in the ith row and jth column of matrix A and Aij as the adjudicate
matrix, which is the matrix A if row i and column j were removed. This allows us to write a general
formula for the determinant.
Definition.

detA =
n∑

j=1

(−1)i+j aijAij (for fixed i) =
n∑

i=1

(−1)i+j aijAij (for fixed j)

This formula allows us to use any row or column to calculate the determinant, which is especially
useful if a certain row contains lots of 0’s.

Below are some properties of the determinant for some n× n matrix A and scalar λ.
det In = 1

det (AT ) = detA

If A is invertible, det (A−1) =
1

detA
det (λA) = λn detA
det (AB) = detA detB

If A is triangular, detA =
n∏

i=1

aii

Example. Find the determinant of the following 3 x 3 matrix.

A =

1 3 7
0 2 −1
2 7 9


We’ll use the first column since it has only two non-zero entries.1 3 7

0 2 −1
2 7 9

 = 1
2 −1
7 9

+ 2
3 7
2 −1

= (18 + 7) + 2(−3− 14) = −9.
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0.3.8 Eigenvalues & Eigenvectors
Definition. Let A be an n×nmatrix. A scalar λ and a vector v⃗ are an eigenvalue and eigenvector of
A if

Av⃗ = λv⃗.

We call p(λ) = det (A− λI) the characteristic polynomial of A. The eigenvalues for A are the
solutions to the equation

p(λ) = det (A− λI) = 0.

Once we have an eigenvalue, we can find the basis vectors for the corresponding eigenspace by solving
the equation

(A− λI) v⃗ = 0⃗.

The basis vectors of the eigenspace for A are the union of the basis vectors of each eigenspace cor-
responding to each eigenvalue.
Example. Find the eigenvalues and eigenvectors of

A =

2 1 3
1 2 3
3 3 20

 .

p(λ) =
2− λ 1 3
1 2− λ 3
3 3 20− λ

= −(λ− 21)(λ− 2)(λ− 1) = 0 =⇒ λ = 1, 2, and 21.

When λ = 1,

A− λI =

 2− 1 1 3 0
1 2− 1 3 0
3 3 20− 1 0

→

 1 1 0 0
0 0 1 0
0 0 0 0

 =⇒ v⃗1 = t

−1
1
0

 .

When λ = 2,

A− λI =

 2− 2 1 3 0
1 2− 2 3 0
3 3 20− 2 0

→

 1 0 3 0
0 1 3 0
0 0 0 0

 =⇒ v⃗2 =

−3
−3
1

 .

When λ = 21,

A− λI =

 2− 21 1 3 0
1 2− 21 3 0
3 3 20− 21 0

→

 1 0 −1/6 0
0 1 −1/6 0
0 0 0 0

 =⇒ v⃗21 =

11
6

 .

Bonus: A’s diagonalization is

A = PDP−1 =⇒

2 1 3
1 2 3
3 3 20

 =

−1 −3 1
1 −3 1
0 1 6

1 0 0
0 2 0
0 0 21

 −1/2 1/2 0
−3/19 −3/19 1/19
1/38 1/38 3/19

 .
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0.4 Important Shapes in 2D & 3D
In 2D space (R2), the most common and simple shapes you will encounter are lines and circles.

• Lines have a form like x = 1 or y = 2x+ 1.

• Circles have a form like (x− 1)2 + (y − 2)2 = 9.

In 3D space (R3), these 2D shapes have higher dimensional versions: planes, cylinders, and spheres.

• Planes have forms like x = 1, y = 2x+ 1, and z = 2x+ 3y + 5.
Note the similarity to the equation for lines. One can think of a plane as a line extruded in a direction.

• Cylinders have forms like (x− 4)2 + (y − 5)2 = 36.
Note the similarity to the equation for circles. One can think of a cylinder as a circle extruded away
from it’s face.

• Spheres have forms like (x− 7)2 + (y − 8)2 + (z − 9)2 = 100.
Note the similarity to the equations for circles. One can think of a sphere as a circle rotated and extruded
about its center.
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Chapter 1

Vector-Valued Functions (VVFs)

1.1 Lines & Planes as VVFs
VVFs are parametric equations that take one input value and return one or more output values as a
vector. We can draw curves in space by defining the tail of the output of the VVF be at the origin
and have the tip trace out the curve. We will look at some simple VVFs that you need to be able to
recognize.

1.1.1 Lines
A straight line is probably the simplest 3D VVF. We can form any straight line using a point that the
line passes through and the direction vector of the line. Letting P be the point and v⃗ be the direction,
a straight line has the form r⃗(t) = P⃗ + tv⃗, where P⃗ is the vector with components the same as P .
The function’s output starts at P⃗ when t = 0 and moves in the direction of v⃗ as t increases.

Figure 1.1: A line can be formed by a single point and a direction vector or two points.
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A line can also be formed using two points. To find the equation of the line in this case, let v⃗ be the
vector connecting the two points, and let P⃗ be a vector point from the origin to one of the two points.
We now have an origin point and direction and can write our function as

r⃗(t) = P⃗0 + t
(
P⃗1 − P⃗0

)
,

where P0 and P1 are the two points on the line.

1.1.2 Planes
A plane can also be formed using a point in the plane, P , and a vector perpendicular to the plane,
n⃗. All vectors ⟨x, y, z⟩ that originate from P and remain in the plane must be perpendicular to n⃗, so
their dot product with n⃗ would be 0. So, the point-normal form of a plane is1

n⃗ ·
(
⟨x, y, z⟩ − P⃗

)
= 0.

Figure 1.2: A point P0 and a normal vector n⃗ define a plane.

One can also construct a plane from 3 non-collinear points in the plane. One can still take advantage
of point-normal form here by choosing 1 point to be P0 and drawing vectors from this point to the
two other points. The cross product of these two vectors is n⃗.((

P⃗1 − P⃗0

)
×
(
P⃗2 − P⃗0

))
·
(
⟨x, y, z⟩ − P⃗0

)
= 0,

where P0, P1, and P2 are the three points in the plane.

One can also construct a plane from a point in the plane, P0, and a line in the plane, r⃗(t) = P⃗1 + tv⃗,
that doesn’t pass through P0. One can get this setup into point-normal form by choosing a an output
of r⃗(t), like P⃗1, and constructing a vector that points from P⃗1 to P⃗0, P⃗1 − P⃗0, and crossing this with
v⃗ to find n⃗. (

v⃗ ×
(
P⃗1 − P⃗0

))
·
(
⟨x, y, z⟩ − P⃗0

)
= 0

1Conventionally, n⃗ is a unit vector, n̂.
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One can also construct a plane from two intersecting lines, r⃗1(t) = P⃗0 + tv⃗1 and r⃗2(t) = P⃗0 + tv⃗2,
where P0 is where the two lines intersect. One can cross v⃗1 with v⃗2 to get the normal vector.

(v⃗1 × v⃗2) ·
(
⟨x, y, z⟩ − P⃗0

)
= 0

1.2 Common Vector-Valued Functions
1.2.1 Circles
You should already recognize x2 + y2 = r2 as the equation of a circle with radius r centered at the
origin. A circle as a VVF in R2 is r⃗(t) = ⟨r cos t, r sin t⟩, which is identical to the parametric form
of a circle. In R3, the z-component is some constant that tells us which plane, z = c, the circle is in.
We can also have circles parallel to x = 0 and y = 0 planes by changing the positions of the sin, cos,
and c terms. For example, r⃗(t) = ⟨cos t, c, sin t⟩ is a circle in the y = c plane.

1.2.2 Helices
A helix looks like a spring and appears to look like a circle when viewed from the top looking down.
It has the form r⃗(t) = ⟨r cos t, r sin t, ct⟩where a ∈ R. a defines the “tightness” between consecutive
windings.

Figure 1.3: A helix

Since VVFs are essentially multiple single-input single-output functions packaged together, the do-
main of a VVF is the domain on which all components are defined.
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For example, if r⃗(t) = ⟨tan t, 6t, ln (16− t2)⟩,

• tan t is defined for all real numbers not equivalent to ±π/2 radians.

• 6t is defined for all real numbers.

• ln (16− t2) is defined for t ∈ (−4, 4).

The intersection of these domains is (−4,−π/2) ∪ (−π/2, π/2) ∪ (π/2, 4), which is the domain of
r⃗(t).

1.3 Derivatives of VVFs
Just like functions from Calc I and II, we can differentiate VVFs. In fact, the limit definitions of the
derivative are nearly identical. Let r⃗(t) = ⟨x(t), y(t), z(t)⟩.

r⃗′(t) = lim
h→0

r⃗(t+ h)− r⃗(t)

h

= lim
h→0

〈
x(t+ h)− x(t)

h
,
y(t+ h)− y(t)

h
,
z(t+ h)− z(t)

h

〉
.

The limit distributes inside the vector, so

r⃗′(t) = ⟨x′(t), y′(t), z′(t)⟩.

Like a position function from Calc I and II, the derivative of a VVF representing position gives a VVF
representing velocity, and the 2nd derivative gives a VVF representing acceleration. The magnitude
of the velocity VVF, the speed, is commonly notated v(t).

There are 5 important properties of the derivatives of VVFs. These properties are similar to single-
variable derivatives. Let r⃗(t) and s⃗(t) be VVFs, a(t) be a scalar function, and c be a scalar.

Linearity
d
dtcr⃗(t) = cr⃗′(t)

Product Rule for Scalar Functions
d
dta(t)r⃗(t) = a(t)r⃗′(t) + r⃗(t)a′(t)

Dot Product Rule
d
dt s⃗(t) · r⃗(t) = s⃗(t) · r⃗′(t) + r⃗(t)s⃗′(t)

Cross Product Rule
d
dt s⃗(t)× r⃗(t) = s⃗(t)× r⃗′(t) + s⃗′(t)× r⃗(t)
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Chain Rule
d
dt r⃗(a(t)) = r⃗′(a(t))a′(t)

A quotient rule doesn’t make sense because we don’t have an operation for dividing two vectors by
each other.

Just like in single variable calculus, we can use the derivative of VVFs to find tangent lines to the curve.
Similar to how f ′(a) represents the slope of f at a, r⃗′(a) represents the direction of the tangent line
at a. Remembering the VVF form of a line, the tangent line to r⃗ at t is

l⃗(t) = r⃗(t) + tr⃗′(t).

In fact, tangent lines appear so often, that we have a special unit vector representing the direction of
the tangent line.

T̂ (t) =
r⃗′(t)∣∣∣∣r⃗′(t)∣∣∣∣ .

You can remember T̂ as the “tangent” vector.

Figure 1.4: T̂ is r⃗′ normalized.

1.4 Integrals of VVFs
VVFs can also be integrated. The integration operation also distributes inside the vector, for both
definite and indefinite integrals.∫

r⃗(t)dt =
〈∫

x(t)dt,
∫

y(t)dt,
∫

z(t)dt
〉
.

For indefinite integrals, the result will have a vector of constants will be added.
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1.5 Reparameterization & Arc Length
VVFs can be reparameterized to trace out the same curve at different speeds by replacing t in r⃗(t)
with any non-decreasing function of t. This fact can come in handy to make the bounds of an inte-
gration problem more convenient.

The integral of the derivative of a VVF gives the displacement vector because∫ b

a

r⃗′(t)dt = r⃗(b)− r⃗(a).

This is exactly like how veclvity · time = displacment.
If we integrate the magnitude of r⃗′(t), we can use the fact that distance = speed · time to find the arc
length of r⃗(t) as

s =

∫ ∣∣∣∣r⃗′(t)∣∣∣∣dt = ∫
√(dx

dt

)2

+

(dy
dt

)2

+

(dz
dt

)2

dt.

We can also write this as an arclength function,

s(t) =

∫ t

0

∣∣∣∣r⃗′(τ)∣∣∣∣dτ .
If we have a function

f(t) = s(t) =

∫ t

0

∣∣∣∣r⃗′(τ)∣∣∣∣dτ ,
where s is strictly increasing, then f has an inverse by the horizontal line test. That is, t(s) = f−1(s)
exists and is also non-decreasing. If we reparameterize r⃗(t) to r⃗(t(s)), which is called the arc length
parameterization, the parameterization will have a constant speed.

1.6 TNB Frame & Osculating Plane/Circle

1.6.1 T-Hat
(
T̂
)

Arc length parameterization gives us another way to find T̂ .

T̂ =
r⃗′(t)∣∣∣∣r⃗′(t)∣∣∣∣ = dr⃗/dt

ds/dt =
dr⃗
ds
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1.6.2 Curvature
Curvature is 1 divided by the radius of the circle that best approximates the curve at a point. Tighter
turns have smaller radii and higher curvature. We can use T̂ to find the curvature at a point on r⃗(t).

κ(t) =
∣∣∣∣dT̂
ds
∣∣∣∣ = ∣∣∣∣dT̂dt

(ds
dt

)−1 ∣∣∣∣ = ∣∣∣∣dT̂dt ∣∣∣∣ 1

v(t)

For example, let’s find κ(t) for the circle in the yz-plane: r⃗(t) = ⟨7, R sin t, R cos t⟩.

r⃗′(t) = ⟨0, R cos t,−R sin t⟩ and v(t) =
√

02 + (R cos t)2 + (−R sin t)2 = R

T̂ (t) =
1

R
r⃗(t) = ⟨0, cos t,− sin t⟩

dT̂
dt = ⟨0, sin t,− cos t⟩∣∣∣∣dT̂

dt
∣∣∣∣ = 1

κ(t) =
1

R
.

This relationship is true for all circles.

1.6.3 N-Hat
(
N̂
)

Starting with the definition of T̂ (t),

T̂ (t) =
r⃗′(t)

v(t)

r⃗′(t) = v(t)T̂ (t)

r⃗′′(t) = v(t)T̂ ′(t) + T̂ (t)v′(t).

We will show that T̂ (t) ⊥ T̂ ′(t).

1

2

d
dt
(
T̂ (t) · T̂ (t)

)
= T̂ · T̂ ′(t)

d
dt
(
T̂ · T̂

)
=

d
dt1 = 0.

So,

T̂ · T̂ ′(t) = 0 =⇒ T̂ (t) ⊥ T̂ ′(t)

N̂(t) =
T̂ ′(t)∣∣∣∣T̂ ′(t)

∣∣∣∣ ⊥ T̂ .
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N̂ is a unit vector perpendicular to T̂ that points in the direction that the curve curls into. It is called
the normal vector because it is perpendicular to the curve. It is in the same plane as r⃗′, T̂ , and r⃗′′.

Figure 1.5: T̂ and N̂

N̂ allows us to rewrite r⃗′′.

r⃗′′(t) =
dv
dt T̂ (t) + v2(t)κ(t)N̂(t)

We can see that r⃗′′(t) has two parts. If r⃗(t) represents position, then dv
dt represents linear acceleration

and v2(t)κ(t) represents centripetal acceleration. You might recognize the formula for centripetal
acceleration in the 2nd part from physics. If we let R(t) = 1

κ(t)
, then the 2nd part becomes v2(t)

R(t)
,

which looks exactly like the formula for centripetal acceleration for uniform circularmotion: ac = v2

r
.

1.6.4 Osculating Plane/Circle & B-Hat
(
B̂
)

The osculating plane in the plane containing r⃗(t), T̂ and N̂ . It is only defined when N̂ ̸= 0. This
means straight lines do not have an osculating plane. The osculating circle lives in the osculating
plane, is centered at r⃗(t) + N̂(t)

κ(t)
, and has radius 1

κ(t)
. The tangent line at r⃗(t) is also tangent to the

osculating circle because both points have the same curvature.
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Figure 1.6: Osculating circle and plane

The vector that is normal to the plane is

B̂(t) = T̂ × N̂ ,

which is called the “binormal” vector because it is perpendicular to both T̂ and N̂ . Together, T̂ , N̂ ,
and B̂ form the Frenet Serret Frame, also called the TNB frame.

Figure 1.7: TNB frame

We can write the equation for the osculating plane as

B̂(t) · (⟨x, y, z⟩ − r⃗(t)) = 0.
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Chapter 2

Differential Multivariable Calculus

2.1 Multivariable Functions
Multivariable functions take several values as an input and return a single value as an output. For
example, z = x2 + y2 takes R2 → R. Although we can only graph and fully visualize up to R2 → R
as a surface, we can imagine a multivariable function with 3 inputs (R3 → R) as a heatmap in 3D
space. However, most of the mathematics we will discuss applies to functions with any number of
inputs.

The domain of a multivariable function f : Rn → R is the largest set of points on which f is defined.
For example, if f(x, y) = ln (9− x2 − y2), the domain of f(x, y) is {(x, y)|x2 + y2 < 9}.

2.2 Level Curves
We can look at different cross sections of a surface f(x, y) by looking at the equation f(x, y) = c
where c ∈ R. This curve lives in the xy-plane and is called the C-level curve. We often visualize
these curves in the z = c plane as part of the surface. In higher dimensions, like f(x, y, z), a C-level
curve becomes a C-level surface.
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For example, the C-level surface of f(x, y, z) = e−(x
2+y2+z2) is the sphere centered at the origin

with radius
√
− ln c: x2 + y2 + z2 = − ln c.

2.3 Quadric Surfaces
Quadric surfaces extend parabolas and other shapes composed of at most squared terms into 3D.

2.3.1 Paraboloids
The paraboloid looks like a parabola that has been rotated and extruded about its axis of symmetry.
It is radially symmetric, and its level curves are circles. Paraboloids have the form z = ax2 + by2

where a, b ∈ R.

Figure 2.1: A paraboloid
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2.3.2 Hyperboloids
A hyperboloid looks like a hyperbola that has been rotated and extruded about its center. It is also
radially symmetric with circular level curves. Paraboloids have the form

d = ±x2

a2
± y2

b2
± z2

c2
,

where one sign is different from the others. Depending on the signs and the value of d, one can get a
hyperboloid of one sheet, two sheets, or a cone.

Hyperboloids of One Sheet

A hyperboloid of one sheet has 2 +’s and 1 - in its equation. It is one fully connected surface.

Figure 2.2: A hyperboloid of one sheet

Hyperboloids of Two Sheets

A hyperboloid of two sheets has 2 -’s and 1 + in its equation. It is made up of two disconnected,
mirror image, surfaces.
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Figure 2.3: A hyperboloid of two sheets

Cone

A cone is a transition state between one-sheet and two-sheet hyperboloids. When the constant term
in the hyperboloid’s equation is 0, the top and bottom surfaces are only connected at a single point.

Figure 2.4: Cones

2.3.3 Hyperbolic Paraboloids
Hyperbolic paraboloids have the form

z = x2 − y2.

They are not radially symmetric and look like a saddle or Pringle’s chip.
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Figure 2.5: A hyperbolic paraboloid

2.3.4 Ellipsoids
Ellipsoids look like ellipses that have been rotated and extruded about their axis. They are radially
symmetric about this axis. They have the general form

d =
x2

a2
+

y2

b2
+

z2

c2
.

Note that the only difference in the equation between an ellipsoid and hyperboloid is the signs are all
positive.

Figure 2.6: Ellipsoids
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2.3.5 3D Cylinders
Although we normally think of cylinders as being extruded circles (circular cylinders), we can create
other types of cylinders by extruding curves into 3D space.

Circular Cylinders

A circular cylinder is what we usually think of as a cylinder. It is a circle extruded into 3D space.
One of its forms is

x2 + y2 = R2,

where R is the cylinder’s radius.

Figure 2.7: A circular cylinder

Parabolic Cylinders

A paraboloid cylinder look like a parabola that has been extruded into 3D space. One of its forms is

z = cy2,

where c ∈ R.
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Figure 2.8: A parabolic cylinder

2.4 Parameterized Surfaces
Parameterized surfaces are a natural of VVFs that map Rn → Rm where usually n < m.

For example, a cylinder of radius 1 can be parameterized as r⃗(u, v) = ⟨sinu, cosu, v⟩. This par-
ticular surface maps R2 → R3. The paraboloid z = x2 + y2 can be parameterized as r⃗(u, v) =
⟨u, v, u2 + v2⟩.

A general trick when trying to parameterize a surface is to substitute u and v for two variables like
x and y and find an expression for the third variable in terms of the u and v. Although this does not
always lead to the most useful parameterization, it can be a good starting point.

For example, if we wanted to parameterize the surface y2 = x2 + z2 from y = 1 to y = 9, we could
use the general trick and get r⃗(u, v) = ⟨u,

√
u2 + v2, v⟩ where 1 ≤ u2 + v2 ≤ 92. Although this

parameterization is technically correct, it is difficult to work with because the bounds for u and v are
not independent.
Instead, we can recognize that the surface we are trying to parameterize has radial symmetry about
the y-axis and instead let u be and angle and v be a radius to get r⃗(u, v) = ⟨v cosu, v, v sinu⟩ where
0 ≤ u ≤ 2π and 1 ≤ v ≤ 9. The parameterization now has independent bounds, which will make
operations like integration much easier.

2.5 Limits & Continuity in 3D
Limits in single-variable calculus are relatively simple because thera are only two ways to approach
a point on a curve: left and right. When dealing with a surface, there are infinitely many ways to ap-
proach a point. So, we need a general and more formal idea of limits that works in higher dimensions.
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2.5.1 Open Delta Neighborhoods
An open delta neighborhood of a point x0 is defined as the set

N (x0, δ) =
{
x ∈ Rn |

∣∣∣∣x− x0

∣∣∣∣ < δ
}
.

Figure 2.9: An open delta neighborhood centered at (x0, y0)

This simply means all points less than a distance δ away from point x0.
For example, N((1, 2), 7) =

{
(x, y) |

√
(x− 1)2 + (y − 2)2 < 7

}
, which is a ball (filled-in circle)

of radius 7 centered at (1, 2).

2.5.2 Boundary Points, Open & Closed Sets
Given some set Ω ⊂ Rn, x is an interior point to Ω if there exists some δ such that N(x, δ) ⊂ Ω.
That is, x is an interior point to Ω if you can draw a circle of non-zero radius around x such that the
entire circle is inside of Ω. All points that are not interior points are boundary points. Formally, x
is a boundary point of Ω if for all δ, N(x, δ) ̸⊂ Ω. Using our definitions of interior and boundary
points, we can define and open set as one that doesn’t contain any of its boundary points and a closed
set as one that contains all of its boundary point. Note that a set that contains some of its boundary
points is neither open nor closed.

2.5.3 Limit & Continuity Definitions
Finally, we have the proper tools to define a limit in higher dimensions. We say that limp→p0 f(p) = L
if for all N(L, ϵ), there exists N(p0, δ) such that p ∈ N(p0, δ) =⇒ f(p) ∈ N(L, ϵ). That is, the
limit of f(p) as p approaches p0 is equal to L if for all open delta neighborhoods around L, there
exists an open delta neighborhood around p0 such that p being in the neighborhood around p0 means
f(p) must be in the neighborhood around L.
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Figure 2.10: Limit definition

Now with a limit definition, we can define continuity at a point. We say that a function f : Rn → R
is continuous at p0 if limp→p0 f(p) = f(p0).

Theorem. Trigonometric functions, exponentials, logarithms, and sums, products, quotients, and
compositions of such functions are continuous on their domain.

Although our definitions allow us to confirm that a value is the limit of a function, they do not give
us any insight into how to find the value of the limit. We’d need to approach our point of interest
from every possible direction to see if the limit from that direction is the same as all the others. If
any two directions give different limit values, then the limit doesn’t exist. We approach a function,
f , by composing it with a single variable path, r⃗(t), that goes through the point of interest, and find
the limit along the path.

If f is some surface f(x, y) and r⃗(t) = ⟨x(t), y(t)⟩, then the composition of f and r⃗ is f ◦ r⃗ =
f(r⃗(t)) = f(x(t), y(t)).
For example, let’s try to find

lim
(x,y)→(0,0)

x2 − y3

x2 + y2
.

We’ll choose two paths r⃗1(t) = ⟨t, 0⟩ and r⃗2(t) = ⟨t, t⟩ and find the limit as t → 0 in both cases.

lim
t→0

f(r⃗1(t)) = lim
t→0

t2

t2
= 1

lim
t→0

f(r⃗2(t)) = lim t → 0
t2 − t3

2t2
= lim

t→0

1

2
− t

2
=

1

2
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Since the limits on the two paths are not equal, we can say that

lim
(x,y)→(0,0)

x2 − y3

x2 + y2
= DNE.

2.6 Partial Derivatives
The single-variable calculus idea of tangent lines doesn’t work for higher dimensional surfaces because
we can draw many different lines that are tangent to the surface, depending on which plane we use to
slice the surface. That is, from which direction we approach the surface.

2.6.1 Partial Derivatives of X, Y, and Z
It’s common to look at the derivative when slicing a surface in the yz, xz, and xy planes. These are
called partial derivatives.

To compute ∂
∂x
f(x, y), we take the derivative with respect to x as if y is constant. Formally,

∂

∂x
f(x, y) = lim

h→0

f(x+ h, y)− f(x, y)

h
,

and
∂

∂y
f(x, y) = lim

h→0

f(x, y + h)− f(x, y)

h
.

We also use the shorthand ∂
∂x

= fx and ∂
∂y

= fy. This shorthand can be extended to higher-order
derivatives so that ∂

∂y

(
∂
∂x
f(x, y)

)
= fxy.

Fubini’s Theorem (also called Tonelli’s or Clairaut’s Theorem) says fxy = fyx, fxz = fzx, and
fyz = fzy. It extends into higher-order mixed partial derivatives, saying that two mixed partial
derivatives of a function are equal as long as they both differentiate the same number of variables the
same number of times. So, fabcdab = faacdbb.

2.6.2 Tangent Planes
Although the tangent lines at a point on a surface can all be different depending on from which di-
rection one approaches a point, all of these tangent lines lie in the same plane, defining the tangent
plane. This means that the tangent plane to z = f(x, y) at (x0, y0) has the following properties:

• The z-value of the tangent plane at (x0, y0) is the same as f(x0, y0).

• The value of the first-order partial derivatives of the tangent plane at (x0, y0) should match
those of f(x0, y0).
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The general form of a plane at (x0, y0, z0) is

P (x, y) = A(x− x0) + B(y − y0) + z0.

We want Px = fx and Py = fy. This means that Px = fx = A and Py = fy = B. Rewriting,

P (x, y) = fx(x− x0) + fy(y − y0) + z0.

The normal vector is ⟨±fx,±fy,∓1⟩. So, the point normal form of the plane is

⟨−fx,−fy, 1⟩ · ⟨x− x0, y − y0, z − f(x0, y0)⟩ = 0.

Figure 2.11: Tangent plane

2.6.3 Linear Approximations
Since ∂z = fx∂x+fy∂y, we can approximate∆z (the change in any function) as∆z ≈ fx∆x+fy∆y
because values of f and the tangent plane are close. We can rewrite this approximation as a dot
product:

∆z ≈ ⟨fx, fy⟩ · ⟨∆x,∆y⟩.

For example, say a cylindrical can has a radius r = 1 and a height h = 5. If the radius is increased
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by 0.1 and the height is increased by 1, what is the approximate ∆V ?

V (r, h) = πr2h

Vr = 2πrh and Vh = πr2

Vr(1, 5) = 10π and Vh(1, 5) = π

∆V ≈ 10π(0.1) + π(1) = 2π.

Comparing this to the actual answer of 2.26π, we see our approximation is decent.

2.7 The Gradient
If you are on a surface f : R2 → R, what direction ⟨∆x,∆y⟩ should you go to maximize the change
of f?
We saw earlier that ∆z ≈ ⟨fx, fy⟩ · ⟨∆x,∆y⟩. To maximize a dot product, ⟨∆x,∆y⟩ should be in
the same direction as ⟨fx, fy⟩. This directional vector is called the gradient: the direction of steepest
ascent.
Notated mathematically,

∇f(x, y) = ⟨fx, fy⟩.

Figure 2.12: A surface and its gradient vectors

2.7.1 Gradient Properties
Let f and g be functions of multiple variables, let r⃗ be a VVF, and let c ∈ R.

1. ∇(f ± g) = ∇f ±∇g

2. ∇(cf) = c∇f
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3. ∇(fg) = f∇g + g∇f

4. ∇(f ◦ r⃗(t)) = ∇f · r⃗′(t)

The 4th gradient property can be generalized a bit further. Suppose we have f(x, y, z), r⃗(u, v) =
⟨x(u, v), y(u, v), z(u, v)⟩, and g(u, v) = (f ◦ r⃗)(u, v).

∂g

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
+

∂f

∂z

∂z

∂u
=

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
·
〈
∂x

∂u
,
∂y

∂u
,
∂z

∂u

〉
= ∇f · ∂r⃗

∂u
.

2.7.2 Linear Approximations with the Gradient
We can rewrite our linear approximation of f at x0 using the gradient.

f(x) ≈ f(x0) + (∇f)(x0) · (x− x0)

2.7.3 The Gradient & C-Level Curves
Let r⃗(t) be the C-level curve of f(x, y).

f ◦ r⃗ = C and d
dt(f ◦ r⃗) = 0

=⇒ d
dt(f ◦ r⃗) = ∇f · r⃗′(t) = 0

=⇒ ∇f ⊥ r⃗′(t)

=⇒ ∇f is perpendicular to the C-level curve of f.

Figure 2.13: The gradient is perpendicular to C-level curves.
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2.8 Directional Derivatives
We already saw partial derivatives in the x, y, and z directions. However, we can take the derivative
coming from other directions. These are called directional derivatives,Dûf , where û is the direction.

Dûf = lim
h→0

f(p⃗0 + hû)

h

If û = ⟨a, b⟩,
Dûf = lim

h→0

f(x+ ah, y + bh)− f(x, y)

h
.

Note that
Dîf = lim

h→0

f(x+ h, y)− f(x, y)

h
= fx and Dĵf = fy.

Let’s look at Dûf .

Dûf = lim
h→0

f(x+ ah, y + bh)− f(x+ ah, y) + f(x+ ah, y)− f(x, y)

h

= b lim
h→0

f(x+ ah, y + bh)− f(x+ ah, y)

bh
+ a lim

h→0

f(x+ ah, y)− f(x, y)

ah

= b
∂f

∂y
+ a

∂f

∂x

= afx + bfy.

So,
Dûf = ∇f · û.

2.9 Optimization
2.9.1 Definitions

1. f(x0, y0) is a localmaximumof f if for some δ > 0, f(x0, y0) ≥ f(x, y)∀(x, y) ∈ N((x, y), δ).
That is, you can draw a circle in the domain of f centered at (x0, y0) such that the value of f
at every point in the circle besides (x0, y0) is less than (x0, y0).

2. f(x0, y0) is a localminimumof f if for some δ > 0, f(x0, y0) ≤ f(x, y)∀(x, y) ∈ N((x, y), δ).
That is, you can draw a circle in the domain of f centered at (x0, y0) such that the value of f
at every point in the circle besides (x0, y0) is greater than (x0, y0).

3. f(x0, y0) is a global max of f if f(x0, y0) ≥ f(x, y)∀(x, y) ∈ D(f)whereD(f) is the domain
of f .

4. f(x0, y0) is a global min of f if f(x0, y0) ≤ f(x, y)∀(x, y) ∈ D(f)whereD(f) is the domain
of f .
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Theorem. If (x0, y0) is in the domain of f and a local extrema of f(x, y), then fx(x0, y0) and
fy(x0, y0) is either 0 or undefined.

Figure 2.14: Critical points appear when the partial derivatives are 0 or undefined.

2.9.2 Critical Points
Critical points are those that have the possibility of being a minimum or maximum. They are an
extension of critical points in single-variable calculus when the derivative is 0.

Definition. (x0, y0) is a critical point of f if fx and fy at (x0, y0) both are 0 or DNE.

For example, consider the function f(x, y) = x2/2− y2/2− xy − 2x− 2y.

fx = x− y − 2 and is 0 when y = x− 2

fy = −y − x− 2 and is 0 when y = −x− 2

x− 2 = −x− 2 when x = 0.

When x = 0, y = −2, so (0,−2) is a critical point of f .

Second Derivative Test & Hessian Matrix

Recall from single-variable calculus that if we have a critical point (derivative is 0), we can find
whether the point is a minimum or maximum by using the second derivative test. If the second
derivative is negative at the critical point, then the critical point is a maximum, and if the second
derivative is positive at the critical point, then the critical point is a minimum. A similar process
works in higher dimensions.

In higher dimensions:

• If fxx and fyy are positive at a critical point, then the critical point is a minimum.
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• If fxx and fyy are negative at a critical point, then the critical point is a maximum.

• If fxx and fyy don’t agree on sign, then the point is a saddle point.

Although there are only 3 options for what a critical point on a surface can be, we need a process of
identifying them that works for for higher dimensional objects too.

Figure 2.15: Three possibilities depending on signs of the seconds derivative

Definition. The Hessian Matrix (for f(x, y)):

H =

[
fxx fxy
fyx fyy

]
Note that detH = fxxfyy − f 2

xy.

If (x0, y0) is a critical point:

• detH(x0, y0) > 0 means (x0, y0) is an extrema.

– If fxx(x0, y0) > 0, then (x0, y0) is a minima.
– If fxx(x0, y0) < 0, then (x0, y0) is a maxima.

• detH(x0, y0) < 0 means (x0, y0) is a saddle point.

• detH(x0, y0) = 0 means the 2nd derivative test is inconclusive.

2.9.3 Gradient Descent
Remember that if we have a multidimensional function, taking a step in the direction of the gradient
results in the maximum possible increase of the function, and taking a step in the opposite direction of
the gradient results in the maximum possible decrease of the function. Gradient descent is a method
to find minima of functions.

Let’s say we’re trying to minimize J(x⃗) with gradient descent. Here are the steps we would take:

1. Pick (or guess) a starting point x⃗0 and a learning rate (step size) δ.
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2. −−→xn+1 =
−→xn − δJ(−→xn)

3. Repeat step 2 until some stopping criteria is met, like
∣∣∣∣δ∇J(−→xn)− δ∇J(−−→xn+1)

∣∣∣∣ < ϵ.

Figure 2.16: Path of several iterations of gradient descent

This method will lead you arbitrarily close to a local minimum, but does not guarantee finding the
global minimum. More advanced versions of gradient descent exists that try to help with this, like
giving the point “momentum” to be able to move out of local mins. This method also has a trade off
between speed and accuracy. Although increasing δ means fewer iterations of gradient descent are
needed to narrow in on a local minimum, one is more likely to be stuck in a local min than if they
had used a smaller δ.

In the real world, the function you are trying to minimize will likely not be well defined enough to
take its partial derivatives to find the gradient, so they too are approximated by doing something like

Jk =
J(k + .0001, . . .)− J(k, . . .)

.0001
.

2.9.4 Lagrange Multipliers
Lagrange multipliers are a method that allow us to find extrema of a function subject to domain con-
straints.
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Toy Example

Say we wish to maximize f(x, y) = x+ y subject to the constraint g(x, y) = x2 + y2 = 1. We can
do this y finding the C-level curve that is tangent to our constraint, as this curve will have the extrema.
At this point,∇f will be in the same direction as ∇g. That is,{

fx = λgx

fy = λgy
.

We also add the constraint itself, g(x, y) equals some constant k, giving us a system of equations
fx = λgx

fy = λgy

g(x, y) = k

.

Figure 2.17: Extremas when the constraints (black) are tangent to the level curves.

In the example above, fx = 1, gx = 2x, fy = 1, and gy = 2y with constraint x2 + y2 = 1.
Giving us a system 

1 = λ2x

1 = λ2y

x2 + y2 = 1

=⇒ x = y = ± 1√
2
and λ =

1√
2
.

This means that the max value of f constrained by g is

f

(
1√
2
,
1√
2

)
=

√
2.

Method of Lagrange Multipliers

Given an objective function, f(x, y) and a constraint equation g(x, y) = k, define F (x, y, λ) =
f(x, y) + λ(k − g(x, y)). The solution, (x, y, λ), to ∇F = 0⃗ will be the solution to the constrained
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optimization problem.

For example, let’s maximize f(x, y) = xy subject to (x− 1)2 + (y − 1)2 = 1.

F (x, y, λ) = xy + λ(1− (x− 1)2 − (y − 1)2)

∇F = ⟨y − 2λ(x− 1), x− 2λ(y − 1), 1− (x− 1)2 − (y − 1)2⟩ = 0⃗
y − 2λ(x− 1) = 0

x− 2λ(y − 1) = 0

1− (x− 1)2 − (y − 1)2 = 0

=⇒


y = 2λ(x− 1)

x = 2λ(y − 1)

(x− 1)2 + (y − 1)2 = 1

y = 2λ(2λ(y − 1)− 1) = 4λ2y − 4λ2 − 2λ =
2λ

2λ+ 1

x = 2λ

(
2λ

2λ+ 1
− 1

)
=

2λ

2λ+ 1
=⇒ x = y

2(x− 1)2 = 1 =⇒ x = y = 1± 1√
2

=⇒ Max/Min of 3± 2
√
2

2
.
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Chapter 3

Multiple Integrals

3.1 Double Integrals
Similar to how the limit of a Riemann Sum, the sum of the areas of small rectangles, is the area
underneath a curve, we can find the volume underneath a surface by summing the volumes of small
rectangular prisms.

[INSERT IMAGE]
In 2D (single variabe): ∆x = b−a

n
,
∫ b

a
f(x)dx = limn→∞

∑n−1
i=0 f(a+ i∆x)∆a.

In 3D: ∆x = b−a
n
, ∆y = d−c

n
,∫ d

c

∫ b

a

f(x, y)dxdy = lim
m→∞

m−1∑
j=0

(
lim
n→∞

n−1∑
i=0

f(a+ i∆a, c+ j∆y)∆x

)
∆y

3.1.1 Fubini’s Theorem & Domain Regions
Theorem (Fubini’s Theorem). The order of integration on a domain where the variables of integration
(x, y, etc.) vary independently doesn’t matter.

For example, let’s find the volume under f(x, y) = 9− x2 − y2, (x, y) ∈ [0, 1]× [1, 2].
We will do so in two ways to show that they are equivalent: one with x first and then y and another
with y first and then x.

V =
∫ 1

0

∫ 2

1
9− x2 − y2dydx V =

∫ 1

2

∫ 1

0
9− x2 − y2dxdy

=
∫ 1

0

[
9y − x2y − y2

3

]2
1
dx =

∫ 2

1

[
9x− x3

3
− xy2

]1
0
dy

=
∫ 1

0
20
3
− x2dx =

∫ 2

1
26
3
− y2dy

=
[
20
3
x− x3

3

]1
0

=
[
26
3
y − y3

3

]2
1

= 19
3

= 19
3
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Let’s look at a case where x and y are not independent. specifically, where the bounds on y are a
function of x.
[INSERT IMAGE]
This is called a Type I Region. Formally, a Type I Region is a domainD = {(x, y) | a ≤ x ≤ b, g(x) ≤ y ≤ h(x)}.

Theorem (Fubini’s Theorem for Type I Regions). Let D be a Type I Region in R2.∫∫
D

f(x, y)dA =

∫ b

a

∫ h(x)

g(x)

f(x, y)dydx

It’s also possible for y to have constant bounds and the bound for x to be a function of y. this is a Type
II Region. Formally, a Type II Region is a domain D = {(x, y) | g(y) ≤ x ≤ h(y), a ≤ y ≤ b}.

Theorem (Fubini’s Theorem for Type II Regions). Let D be a Type II Region in R2.∫∫
D

f(x, y)dA =

∫ b

a

∫ h(y)

g(y)

f(x, y)dxdy

Sometimes, a region can be describes as both Type I and Type II. You should pick whichever de-
scription is most convenient.

The previous two theorems can be summarized as dependent variables need to be integrated before
the variables that they depend on. This core idea extends into higher dimensions where classifying
regions becomes tedious and not very helpful.

One can split larger, harder to describe domains into smaller domains. Let D1 ∪D2 = D.
[INSERT IMAGE]∫∫

D

f(x, y)dA =

∫∫
D1

f(x, y)dA+

∫∫
D2

f(x, y)dA−
∫∫

D1∩D2

f(x, y)dA

3.1.2 Average Values
We can think of the average value of a function over some interval as the answer to the question: “If
I flattened this function into a box over the interval, what would the height of the box be?”
For single-variable functions, the answer is f̄ = 1

b−a

∫ b

a
f(x)dx =

∫ b
a f(x)dx∫ b

a dx .
This idea of summing a function over a domain and the dividing by the size of that domain holds into
multivariable as

f̄ =

∫
D

f(x, y)dD∫
D

dD
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Mean Value Theorem

Theorem (Mean Value Theorem). If a function f is continuous on a domain D, then there exists
some point p ∈ D such that f(p) = f̄ .

3.1.3 Volume Between Surfaces
Similar to how we could find the area between two curves in single-variable calculus, we can find the
volume between two surfaces.

Vbwtn =

∫∫
D

fdA−
∫∫
D

gdA =

∫∫
D

(f − g)dA

If g is below f in D1 ⊂ D but is above f in D2 ⊂ D, where D1 ∪D2 = D and D1 ∩D2 = ∅, we
can still find the volume between the surfaces by splitting D into D1 and D2.

Vbwtn =

∫∫
D

∣∣f − g
∣∣dA =

∫∫
D1

(f − g)dA+

∫∫
D2

(g − f)dA

3.1.4 Plane Laminas
Definition. A plane lamina is an idealized 2D (0 thickness) object with mass that occupies a region
D ⊂ R2.

Some questions one may ask about a plane lamina are “What is the total mass?” and “Where is the
center of mass?”.
We can think of the mass as

M =

∫∫
D

σ(x, y)dA

where σ(x, y) is the mass density of the lamina at (x, y).
The center of mass is

x̄ =
My

M
=

∫∫
D

xσ(x, y)dA

M
and ȳ =

Mx

M
=

∫∫
D

yσ(x, y)dA

M

whereMx is the moment about the x-axis andMy is the moment about the y-axis.

3.2 Triple Integrals
Triple integrals work much the same way as single and double integrals. They are still defined by a
Riemann sum, and Fubini’s theorems about independent domains and the order of integration still
applies.
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3.2.1 Fubini’s Theorem for Z-simple Regions
There is another case of Fubini’s Theorem that arises in 3D.

Theorem (Fubini’s Theorem for Z-simple Regions). LetD ⊂ R3 and letΩ = {(x, y, z) | (x, y) ∈ D, g(x, y) ≤ z ≤ h(x, y)}
be a z-simple region. ∫∫∫

Ω

f(x, y, z)dV =

∫∫
D

∫ h(x,y)

g(x,y)

f(x, y, z)dzdA

In other words, dependent variables must be integrated before the independent variables on which
they rely, but the order of integration of independent variables doesn’t matter.

For example, we an express the unit sphere as a z-simple region where D = {(x, y) | x2 + y2 ≤ 1}
and −

√
1− x2 − y2 ≤ z ≤

√
1− x2 − y2. Note that D is a Type I Region.

Vsphere =

∫ 1

−1

∫ √
1−x2

−
√
1−x2

∫ √
1−x2−y2

−
√

1−x2−y2
dzdxdx =

4π

3

3.2.2 Laminas
Similar to plane laminas:

M =

∫∫∫
Ω

σ(x, y, z)dV

x̄ =
Myz

M
=

∫∫∫
Ω

xσ(x, y, z)dV

M
, ȳ =

Mxz

M
=

∫∫∫
Ω

yσ(x, y, z)dV

M
, and z̄ =

Mxy

M
=

∫∫∫
Ω

zσ(x, y, z)dV

M
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Chapter 4

Curvilinear Coordinates

You should already know about Cartesian (x, y) coordinates and polar (r, θ) coordinates in 2D. Carte-
sian extends to 3D as (x, y, z), but there are multiple ways to extend polar coordinates into 3D.

4.1 Review of Polar Coordinates
Polar coordinates represent every point in 2D space as a distance from the origin r and an angle from
the horizontal θ. This means that unlike rectangular (Cartesian) (x, y) coordinates, different polar
coordinates can represent the same point: (2,−π/4) = (−2, 3π/4) = (2, 7π/4).
[INSERT IMAGE]
Polar coordinates can be transformed into rectangular coordinates by x = r cos θ and y = r sin θ.
This means that r =

√
x2 + y2 and θ = tan−1 y

x
.

4.1.1 Circles
A circle of radius R centered at the origin can be represented as r = R.
Circles not centered at the origin require using the transformation equations.

(x− a)2 + (y − b)2 = R2 =⇒ (r cos θ − a)2 + (r sin θ − b)2 = R2

r2 cos2 θ + r2 sin2 θ − 2ra cos θ − 2rb sin θ + a2 + b2 = R2

r2 − 2r(a cos θ + b sin θ)−R2 + a2 + b2 = 0

r = (a cos θ + b sin θ)±
√

R2 − a2 − b2 + (a cos θ + b sin θ)2

4.1.2 Lines
• Lines through the origin can be represented as θ = tan−1 m wherem is the slope of the line.

• Lines of the form x = a can be represented as r = a sec θ.
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• Lines of the form y = a can be represented as r = a csc θ.

• All other lines of the form y = ax + b can be represented as r = b
sin θ−a cos θ . This form also

covers the previous 2.

4.1.3 Integration

The line element is ds2 = dr2 + r2dθ2, meaning that s =
∫ θ2
θ1

√
r2 +

( dr
dθ
)
dθ.

The area element is dA = rdrdθ, meaning that A =
∫ θ2
θ1

r2dθ.

Gaussian Integral

Let’s compute
∫∫
D

e−x2−y2dA where D is the unit disk.

A =

∫ 1

−1

∫ √
1−x2

−
√
1−x2

e−x2−y2dydx =

∫ 1

0

∫ 2π

0

e−r2rdθdr =
∫ 1

0

re−r2dr ·
∫ 2π

0

dθ.

Let u = −r2, du = −2rdr.

=
1

2

∫ −1

0

eudu · 2π

= π

(
1− 1

e

)
.

Now, let’s have D = R2. This is the famous Gaussian Integral.

=

∫ ∞

0

∫ 2π

0

re−r2dθdr

=

∫ ∞

0

re−r2dr ·
∫ 2π

0

dθ.

Let u = −r2, du = −2rdr.

= −π

∫ −∞

0

eudu

= −π

((
lim

a→−∞
ea
)
− e0

)
= −π (0− 1)

= π
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4.2 Cylindrical Coordinates
Cylindrical coordinates are the expansion of polar coordinates by including a third term that represents
the height from the xy-plane, z. All cylindrical coordinates have the form (r, θ, z). This system is
called cylindrical because it’s easy to describe shapes with cylindrical symmetry because integrations
have constant, independent bounds.
[INSERT IMAGE]

4.2.1 Conversions

• From Cylindrical to Cartesian

(r, θ, z) = (r cos θ, r sin θ, z)

• From Cartesian to Cylindrical

(x, y, z) =
(√

x2 + y2, tan−1 y

x
, z
)

4.2.2 Integration
The volume element in cylindrical coordinates is dV = rdrdθdz.
[INSERT IMAGE]
For example, let’s evaluate

∫ 4

0

∫√16−y2

0

∫ 16−x2−y2

0
dzdxdy, the volume under the paraboloid z =

16− x2 − y2 using cylindrical coordinates.

=

∫ 4

0

∫ π/2

0

∫ 16−r2

0

rdzdθdr

=

∫ 4

0

∫ π/2

0

16r − r2dθdr

=
π

2

∫ 4

0

16r − r3dr

=
π

2

[
8r2 − r4

4

]4
0

= 32π

For another example, let’s find the average value of f(x, y, z) = z on the domainΩ which is bounded
by z =

√
6− x2 − y2 and z = x2 + y2 1.

f̄ =

∫ 2π

0

∫ √
2

0

∫ √
6−r2

r2
zrdzdrdθ∫ 2π

0

∫ √
2

0

∫ √
6−r2

r2
rdzdrdθ

=
11

12
√
6− 17

1Work omitted for brevity
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4.3 Spherical Coordinates
Unlike how cylindrical coordinates extend polar coordinates into 3D by adding a Cartesian term,
spherical coordinates add an angular term, ϕ, the azimuthal angle. All spherical coordinates have the
form (ρ, θ, ϕ) where ρ is the distance from the origin, θ is the polar angle in the xy-plane, and ϕ is
the azimuthal angle from the +z-axis. Shapes with spherical symmetry have a constant bounds of
integration in spherical coordinates.
[INSERT IMAGE]

4.3.1 Conversions
• From spherical to Cartesian

(ρ, θ, ϕ) = (r cos θ sinϕ, ρ sin θ sinϕ, ρ cosϕ)

• From Cartesian to Spherical

(x, y, z) =

(√
x2 + y2 + z2, arctan

(y
x

)
, arccos

(
z√

x2 + y2 + z2

))

4.3.2 Integration
The area element is dA = ρ2 sinϕdθdϕ.
The volume element is dV = ρ2 sinϕdrdθdϕ.

[INSERT IMAGE]

Sphere Volume

Since a sphere of radius R is spherically symmetric, it should be simple to find its volume using
spherical coordinates.

V =

∫ R

0

∫ π

0

∫ 2π

0

ρ2 sinϕdθdϕdρ

=

∫ R

0

ρ2dρ ·
∫ π

0

sinϕdϕ ·
∫ 2π

0

dθ

=
R3

3
· 2 · 2π

=
4π

3
R3
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Chapter 5

Line & Surface Integrals

5.1 Vector Fields
Vector fields are a function f : Rn → Rn. This is generally conceptualized as assigning an n-
dimensional vector to every point in an n-dimensional space.
Many physics concepts can be thought of as vector fields. The electric field due to some point charge
Q as some distance r from Q is E⃗(x, y, z) = ϵ0Q

r2
r̂ where ϵ0 is a constant and r̂ is a radial unit vector

pointing away from Q.
[INSERT IMAGE]
A generic 2D vector field is

F⃗ (x, y) = ⟨P (x, y), Q(x, y)⟩.

Vector fields work similarly to VVFs in that they are added component-wise.

5.2 Line Integrals
5.2.1 Line Integrals of Scalar Functions
Let’s say we have a a simple (non-self-intersecting) curve in the xy-plane C parameterized by r⃗(t) =
⟨x(t), y(t)⟩ and a surface z = f(x, y) above C. We can extrude C up to f , forming a “curtain” with
an area A that can be found through integration.

dA = f(x, y) · ds

s =

∫ ∣∣∣∣r⃗′(t)∣∣∣∣dt
ds =

∣∣∣∣r⃗′(t)∣∣∣∣dt
=⇒ A =

∫
C

f(x, y)ds =
∫

(f ◦ r⃗)(t) ·
∣∣∣∣r⃗′(t)∣∣∣∣dt.

This is the line integral of r⃗ on f . (f ◦ r⃗) is called the “pullback.”
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For example, let’s find the line integral of y = x2 for x ≤ x ≤
√
2 in f(x, y) = 2x.

r⃗(t) = ⟨t, t2⟩, 0 ≤ t ≤
√
2∫

C

f(x, y)ds =
∫ √

2

0

(2x ◦ ⟨t, t2⟩) ·
∣∣∣∣r⃗′(t)∣∣∣∣dt = ∫ √

2

0

2t
√
1 + 4t2dt.

Let u = 1 + 4t2, du = 8tdt.
=

1

4

∫ 9

1

√
udu =

13

3

5.2.2 Line Integrals of Vector Fields
One can think of line integral of vector fields as the total work done by the vector field as it moves
along some simple path.

W =

∫
C

(
F⃗ ◦ r⃗

)
· T̂ds

=

∫
C

r⃗′(t)∣∣∣∣r⃗′(t)∣∣∣∣ · ∣∣∣∣r⃗′(t)∣∣∣∣dt
=

∫
C

(
F⃗ ◦ r⃗

)
· r⃗′(t)dt =

∫
C

F⃗ · dr⃗

For example, let’s find the line integral of r⃗(t) = ⟨t, t2, t⟩ for 0 ≤ t ≤ 1 in the vector field
F⃗ (x, y, z) = ⟨ez,

√
1− x2, sinx⟩.

F⃗ ◦ r⃗ = ⟨et,
√
1− t2, sin t⟩

r⃗′(t) = ⟨1, 2t, 1⟩∫ 1

0

⟨et,
√
1− t2, sin t⟩ · ⟨1, 2t, 1⟩dt =

∫ 1

0

et + 2t
√
1− t2 + sin tdt

= e− cos 1 + 2

3

Direction Matters

Lemma. ∫
−C

F⃗ · dr⃗ = −
∫
C

F⃗dr⃗

That is, the direction in which one takes a line integral matters. You can think of this as the wind
helping you sail in one direction (positive line integral) but fighting against you in the opposite direction
(negative line integral).
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Circulations

Definition. If C is a simple, closed curve, then
∫
C

F⃗ · dr⃗ is the circulation of F⃗ on C.

We notate that we are taking a circulation as
∮
C

F⃗ · dr⃗.
[INSERT IMAGE]
For example, let’s find the circulation of F⃗ (x, y, z) = ⟨yz, xz, xy⟩ on the circle of radius 1 centered
at (0, 0, 1) in the z = 1 plane in the counter-clockwise direction.

r⃗(t) = ⟨cos t, sin t, 1⟩, 0 ≤ t ≤ 2π

F⃗ ◦ r⃗ = ⟨sin t, cos t, sin t cos t⟩(
F⃗ ◦ r⃗

)
· r⃗′(t) = cos (2t)∮

C

F⃗ · dr⃗ =
∫ 2π

0

cos (2t)dt = 1

2
sin (2t)|2π0 = 0

5.2.3 Conservative Vector Fields
Definition. A vector field F⃗ is conservative if

∫
C

F⃗ · dr⃗ is the same for all C connecting the same
endpoints.

It’s easy to see from this definition that vector fields of constant direction and magnitude, like F⃗ =
⟨c, c, c⟩ is conservative, as its line integral only depends on the curve.

Theorem. If F⃗ is conservative, then
∮
C

F⃗ · dr⃗ = 0.

Proof. We can break the simple, closed curve, C into two simple curves C1 and C2 that have the
same endpoints and direction such that C = C1 − C2.
[INSERT IMAGE]
So, ∮

C

F⃗ · dr⃗ =
∫
C1

f⃗ · dr⃗ −
∫
C2

F⃗ · dr⃗.

Since C1 and C2 have the same direction and endpoints, and F⃗ is conservative, the line integrals have
the same value, L. ∮

C

F⃗ · dr⃗ = L− L = 0

■
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5.2.4 FTC for Line Integrals
We saw earlier that dz = ∇f ·⟨dx, dy⟩. This can be written as dz = ∇f ·dr⃗ where r⃗(t) parameterizes
a simple curve C and a ≤ t ≤ b.∫

C

∇f · dr⃗ =
∫ b

a

(∇f ◦ r⃗) · r⃗′dt = f ◦ r⃗|ba = f(r⃗(b))− f(r⃗(a))

∫
C

∇f · dr⃗ = f(r⃗(b))− f(r⃗(a))

the fundamental theorem of calculus for line integrals.

Let’s test by computing a line integral directly and using the FTC for line integrals. Let the path be
the top-half semicircle connecting (1, 0) to (−1, 0) and let f(x, y) = 12− 3x− y.

r⃗(t) = ⟨cos t, sin t⟩, 0 ≤ t ≤ π
Directly FTC

r⃗′(t) = ⟨− sin t, cos t⟩ r⃗(0) = ⟨1, 0⟩, r⃗(π) = ⟨−1, 0⟩
∇f = ⟨−3,−1⟩ f(r⃗(0)) = 9, f(r⃗(π)) = 15∫ π

0
3 sin t− cos tdt = 3− cos t− sin t|π0 = 6 15− 9 = 6

Potential Functions

Note that the FTC for line integrals doesn’t care about the specific path taken between two points, but
only the starting and ending points. Any paths that started and ended at the same points would have
the same values, and paths that start and end at the same point would have a value of 0.
So, ∮

C

∇f · dr⃗ = 0.

So, by our theorem that says all F⃗ such that
∮
C

F⃗ · dr⃗ = 0 are conservative, all vector fields F⃗ = ∇f

are conservative. f is called the potential function of F⃗ .

You might recognize potential functions from physics. All conservative forces, like the force of grav-
ity, have a potential energy function. For gravitational force, U(r) = −GMm

r
and F⃗g(r) = GMm

r2
r̂

where r̂ is a radial unit vector pointing away from the object to which the force is applied.

5.2.5 Test for a Conservative Vector Field
Since we know that all conservative vector fields have potential function, we can create a test to see
if a given vector field is conservative. F⃗Conservative = ⟨fx, fy⟩, so fxy = fyx. That is, a vector field
F⃗ (x, y) = ⟨P (x, y), Q(x, y)⟩ is conservative if Py = Qx.
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For 3D vector field, the test is a littlemore complicated. A vector field F⃗ ⟨P (x, y, z), Q(x, y, z), R(x, y, z)⟩
is conservative if Py = Qx, Qz = Ry, and Rx = Pz.

For example, let see if ⟨yz, xz, xy⟩ is conservative.

∂

∂y
yz = z =

∂

∂x
xz

∂

∂z
xz = x =

∂

∂y
xy

∂

∂y
xy = y =

∂

∂z
yz.

So, the vector field is conservative.

5.3 Surface Integrals
We can parameterize any surface as r⃗(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩ (or using some other coor-
dinate system). This is because we are simple taking one 2D surface, the uv-plane, and transforming
it into another surface in such a way that areas ear each other in the uv-plane are near each other
on the surface. This fact that areas stay close to each other allows us to make statement about the
complicated surface while working with the simple uv-plane.
[INSERT IMAGE]
The change of the surface in the u direction is ∂r̂

∂u
du

The change of the surface in the v direction is ∂r̂
∂v
dv

So, the area of the surface in relation to u and v is the area of the parallelogram spanned by these two
surface: a cross product.

ds =
∣∣∣∣ 〈∂r⃗

∂u
du
〉
×
〈
∂r⃗

∂v
dv
〉 ∣∣∣∣ = ∣∣∣∣r⃗u × r⃗v

∣∣∣∣dudv
Definition. For a surface S parameterized by r⃗(u, v) and (u, v) ⊂ D, the surface area is

A(S) =

∫∫
S

ds =
∫∫
D

∣∣∣∣r⃗u × r⃗v
∣∣∣∣dudv

5.3.1 Surface Integrals of Scalar Functions
Definition. The surface integral of a scalar function f(x, y, z) is∫∫

S

f(x, y, z)ds =
∫∫
D

(f ◦ r⃗)
∣∣∣∣r⃗u × r⃗v

∣∣∣∣dA
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Let’s apply a surface integral to a real problem. Let the cap of the sphere or radius 8m centered at the
origin between z = 7 and z = 8 have a charge density σ(x, y, z) = z µC/m2. Find the total charge
Q on the cap.
[INSERT IMAGE]
We will parameterize the cap using spherical coordinates.

D =

{
(ρ, θ, ϕ) | ρ = 8, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ cos−1

(
7

8

)}
r⃗(θ, ϕ) = ⟨8 sinϕ cos θ, 8 sinϕ sin θ, 8 cosϕ⟩

r⃗θ = ⟨−8 sinϕ sin θ, 8 sinϕ cos θ, 0⟩, r⃗ϕ = ⟨8 cosϕ cos θ, 8 cosϕ sin θ,−8 sinϕ⟩
σ ◦ r⃗ = 8 cosϕ,

∣∣∣∣r⃗θ × r⃗ϕ
∣∣∣∣ = 64 sinϕ

Q =

∫ 2π

0

∫ cos−1 7/8

0

64 sinϕ · 8dϕdθ

= 832π

∫ cos−1 7/8

0

sinϕdϕ

= 832ϕ(− cosϕ)|cos
−17/8

0 = 832π (−7/8 + 1) = 128π µC

5.3.2 Surface Integrals of Vector Fields
Definition. The surface integral of a vector field F⃗ through a surface S is∫∫

S

F⃗ · n̂ds

where n̂ is a unit vector normal to the surface. This integral can also be written as∫∫
S

F⃗ · ds⃗

Flux

We can rewrite the surface integral because n̂ = r⃗u×r⃗v∣∣∣∣r⃗u×r⃗v

∣∣∣∣ and ds = ∣∣∣∣r⃗u × r⃗v
∣∣∣∣.

[INSERT IMAGE]
So, ∫∫

S

F⃗ · ds =
∫∫
D

(
F⃗ ◦ r⃗

)
· (r⃗u × r⃗v) dudv

where D is the domain of S in uv-space (a uv-plane), and r⃗(u, v) parameterizes the surface S. This
quantity is called the “directed surface area integral” or “flux” through S.

69



Flux tells us howmuch a vector field penetrates a surface. If the field is parallel to the surface (perpen-
dicular to the normal vector) then the flux is 0. As the field and normal vector to the surface become
more aligned, the flux increases.

Flux has many practical applications. One of the fundamental equations governing electricity and
magnetism talks about electric flux: the amount of an electric field that goes through a surface. We
will investigate this equation later.

For example, let an electric field be E⃗ = ⟨x, y, 0⟩ N/C. Compute the electric flux, ΦE , through the
portion of the paraboloid z = 25− x2 − y2 above the xy-plane. Assume a unit distance of 1 meter.
We will take advantage of a paraboloid’s radial symmetry and use cylindrical coordinates.

r⃗(u, v) = ⟨u cos v, u sin v, 25− u2⟩ where 0 ≤ u ≤ 5 and 0 ≤ v ≤ 2π

r⃗u = ⟨cos v, sin v,−2u⟩ and r⃗v = ⟨−u sin v, u cos v, 0⟩
r⃗u × r⃗v = ⟨2u2 cos v, 2u2 sin v, 0⟩

E⃗ ◦ r⃗ = ⟨u cos v, u sin v, 0⟩(
E⃗ ◦ r⃗

)
· (r⃗u)× r⃗v) = 2u3

ΦE =

∫ 2π

0

∫ 5

0

2u3dudv = 2π

(
u4

2

)
|50 = 625 Nm2/C
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Chapter 6

Vector Analysis

6.1 Integral Curves
An integral curve, r⃗, of a vector field, F⃗ , is a VVF such that r⃗′(t) =

(
F⃗ ◦ r⃗

)
(t).

For example, let’s find an integral curve to F⃗ (x, y) = ⟨x, 2y⟩.

d
dt r⃗(t) = F⃗ ◦ r⃗

d
dt⟨x(t), y(t)⟩ = ⟨x(t), 2y(t)⟩ →

{
x′(t) = x(t)

y′(t) = 2y(t)
=⇒ r⃗(t) = ⟨c1et, c2e2t⟩

These integral curves have applications in physics and show up naturally in nature alongside vector
fields. In physics, the integral curves for an electric field are called “field lines” and integral curves of
the velocity field of a fluid like water or air are called “streamlines.” You may recognize these curves
as tracing out a slope field.
[INSERT IMAGE]

6.2 Divergence & Curl
6.2.1 Divergence
In 2D we define the divergence of a vector field F⃗ (x, y) = ⟨P (x, y), Q(x, y)⟩ as div(F⃗ ) = Px+Qy.
This tells how the separation between particles in the vector field change over time. Positive divergence
at some point means that particles tend to move away from each other, and that point is acting like a
“source.” Negative divergence at some point means that particles tend to move towards each other,
and that point is acting like a “sink.”
[INSERT IMAGE]
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This operation extends into higher dimensions. We define the “del operator” as

∇ =

〈
∂

∂x
,
∂

∂y
, . . .

〉
so that div(F⃗ ) = ∇ · F⃗ .

The del operator is not coordinate system independent. The above version only works for Cartesian
coordinates. For spherical coordinates,

∇ · F⃗ =
1

ρ2
∂(ρ2Fρ)

∂ρ
+

1

ρ sin θ
∂

∂θ
(Fθ sin θ) +

1

ρ sin θ
∂

∂ϕ
Fϕ where F⃗ = ⟨Fρ, Fθ, Fϕ⟩.

Thankfully, vector fields in spherical coordinates are rare, and it’s usually easier to convert to Carte-
sian coordinates before doing any calculations.

Definition. If ∇ · F⃗ = 0, then F⃗ is incompressible.
This aligns with the idea of incompressible fluids in physics and can simplify or remove the need for
some calculations.

The Laplacian

The Laplacian is the higher dimension version of concavity. Let f be a scalar function, We say that
∇2f = ∇ · (∇f) = div(grad(f)). Written out more fully,

∇2f = fxx + fyy + . . .

6.2.2 Curl
In 2D, we define the curl of a vector field F⃗ (x, y) = ⟨P (x, y), Q(x, y)⟩ as

∇× F⃗ = Qx − Py.

Note that the result is a scalar for this 2D case.
If Qx > 0, then the field line accelerate upwards and to the left together: a counter-clockwise rota-
tion.
If Py > 0, then the field lines accelerate upwards and to the left together: a clockwise rotation.
So, ∇× F⃗ tells us the net counter-clockwise rotation at a point.

We use the same del operator we introduced in divergence for curl, so∇× F⃗ =
〈

∂
∂x
, ∂
∂y
, . . .

〉
× F⃗ .

This means that for 3D and higher dimensions, the curl is a vector that is perpendicular to the plane
of net rotation.

For example, let’s compute the curl of F⃗ (x, y) = ⟨−y, x⟩.

∂

∂x
(x)− ∂

∂y
(−y) = 1− (−1) = 2
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Curl & Conservative Vector Fields

Theorem. F⃗ is conservative⇔ ∇× F⃗ = 0⃗

Partial Proof. We will prove the 2D case and provide intuition for higher dimensions.
Let F⃗ (x, y) = ⟨P (x, y), Q(x, y)⟩ be a conservative vector field.
Since F⃗ is conservative, Py = Qx.
So, ∇× F⃗ = Qx − Py = 0. ■

Thinking back to what it means for a vector field to be conservative, a vector field must have path
independence between all points to have a potential function and be conservative. If in some plane
there is a net rotation, there cannot be path independence because one can choose one path that goes
“with” the field and another that goes “against” the field.
[INSERT IMAGE]

Divergence of Curl

Theorem. Let F⃗ (x, y, z) = ⟨P (x, y, z), Q(x, y, z), R(x, y, z)⟩ be a twice differentiable vector field.
∇ · (∇× F⃗ ) = 0

Proof. ∇× F⃗ = ⟨Ry −Qz, Pz −Rx, Qx − Py⟩
∇ · (∇× F⃗ ) = Ryx −Qzx + Pzy −Rxy +Qxz − Pyz

Pyz = Pzy, Qxz = Qzx, and Rxy = Ryx by Fubini’s Theorem.
So, ∇ · (∇× F⃗ ) = 0 ■

6.3 Green’s Theorems
Similar to how we had the fundamental theorem of calculus (FTC) for single-variable calculus, there
are several higher-dimensional versions of the FTC.
Recall that the fundamental theorem of calculus is

∫ b

a
f ′(x)dx = f(b) − f(a). One way to think

of this statement is “summing up the derivative on a closed interval is the same as the ‘sum’ of f on
the boundary.” We will see that many of these higher versions of the FTC deal with intervals and
boundaries.

6.3.1 Green’s Theorem for Circulation
Theorem (Green’s Theorem for Circulation). Let C be a closed, counter-clockwise oriented curve in
R2. For any differentiable vector field,

F⃗ (x, y) = ⟨Q(x, y), R(x, y)⟩,
∮
C

Rdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂R

∂y

)
dxdy

where D is the interior of C.
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Or, in more modern notation, ∮
C

F⃗ · dr⃗ =
∫∫
D

∇× F⃗dA.

[INSERT IMAGE]
This is saying that summing up the interior of the derivative is the to summing up the boundary of
the function, very similar to the FTC.
One can think of this in a physical sense as saying that the work done by the vector field in moving a
particle counter-clockwise on C is equal to the rotation (curl) inside of C (D).
This theorem also relates the idea of path independence and curl of a conservative vector field that we
proved the 2D case for. The left side shows path independence and will be 0 for conservative vector
fields, and the right side shows curl, which will also be 0 for conservative vector fields.

Partial Proof. We will prove the 2D case, but the underlying argument is easily generalized.∮
C

F⃗ · dr⃗ =
∮
c

⟨P (x, y), 0⟩ · dr⃗ +
∮
C

⟨0, Q(x, y)⟩ · dr⃗.

IfD is convex, we an breakC into 2 curves on the same interval,C1 andC2 such thatC1 : r⃗⟨x, h1(x)⟩
and C2 : r⃗⟨x, h2(x)⟩, where x ∈ [a, b].
[INSERT IMAGE]

=

∫ b

a

P (x, h1(x))dx−
∫ b

a

P (x, h2(x))dx

= −
∫ b

a

P (x, h2(x))− P (x, h1(x))dx

= −
∫ b

a

P (x, y)|y=h2(x)
y=h1(x)

dx

= −
∫ b

a

∫ h2(x)

h1(x)

∂P

∂y
dydx

= −
∫∫
D

∂P

∂y
dA+

∫∫
D

∂Q

∂x
dA

=

∫∫
D

∇× F⃗dA

■

For example, let’s use Green’s Theorem for Circulation to compute
∮
C

F⃗ · dr⃗ where F⃗ = ⟨x2, xy+x2⟩

and C is the unit circle. ∮
C

F⃗ · dr⃗ =
∫∫
D

∇× F⃗dA
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∇× F⃗ = y + 2x.

Since C is the unit circle, we’ll evaluate the integral using polar coordinates. So

dA = rdrdθ

∫∫
D

∇× F⃗dA =

∫ 2π

0

∫ 1

0

(r sin θ + 2r cos θ)rdrdθ

=

∫ 2π

0

(sin θ
3

+
2 cos θ

3

)
dθ = 0.

Note that although this particular circulation is 0, we know that the vector field is not conservative
because the curl is not 0.

Area of a Closed Region

The area inside of D is

A =

∫∫
D

dxdy

=

∫∫
D

(
∇× F⃗

)
dxdy

if∇× F⃗ = 1. One such vector field is F⃗ = ⟨−y/2, x/2⟩.

=

∮
C

(−y/2)dx+ (x/2)dy

by Green’s Theorem for Circulation.

=
1

2

∮
C

xy′ − yx′.

So, if we have some counter-clockwise oriented parametric function (x(t), y(t)) where t0 ≤ t ≤ t1
that parameterizes C, then

A =
1

2

∫ t1

t0

(
x
dy
dt − y

dx
dt

)
dt

We can also choose different vector field where∇× F⃗ = 1 so that

A =

∮
C

xy′ =

∮
C

yx′
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For example, let’s compute the area of a circle with radius R. We’ll parameterize the circle as
(R cos t, R sin t), t ∈ [0, 2π].

A =
1

2

∫ 2π

0

((R cos t)(R cos t)− (R sin t)(−R sin t))dt

=
1

2

∫ 2π

0

R2dt

=
1

2
R22π

= πR2

6.3.2 Green’s Theorem for Flux
Theorem (Green’s Theorem from Flux). Let C be a closed, counter-clockwise oriented curve in R2

and let D be the region contained within C. For any differentiable vector field F⃗ (x, y),∫∫
D

∇ · f⃗dA =

∮
C

F⃗ · n̂ds

[INSERT IMAGE]
This is saying that the sum of the divergence within D is equal to the flux through C.
Our intuition for this is that divergence is the tendency for integral curves of F⃗ to spread out, and flux
would then be these integral curves crossing the boundary curve C.

This ability to convert between a line integral and surface integral often makes flux problems easier to
solve. For example, one would have to calculate four integrals to find the flux through a rectangular
region, but only a single double integral over the simple interior region.

6.4 Divergence Theorem
Theorem. Let V be a compact solid, and let S be its boundary surface. For any differentiable vector
field F⃗ (x, y, z), ∮

S

∮
F⃗ · ds⃗ =

∫∫∫
V

∇ · F⃗dV

where ds⃗ = n̂ds = (r⃗u × r⃗v)dudv and dV is the volume differential.

[INSERT IMAGE]
This says that the flux through a closed surface is equal to the sum of the divergence inside that sur-
face.
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Intuitively, divergence describes howmuch a vector field is going in or out at a point, so summing it up
inside some solid would tell us the amount the vector field is going in or out on the solid’s boundary,
which is flux.

For example, let’s find the flux through the unit sphere centered at the origin from the vector field
F⃗ (x, y, z) = ⟨x, y, z2⟩.

S = {(ρ, θ, ϕ) | ρ = 1, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π}
V = {(ρ, θ, ϕ) | 0 ≤ ρ ≤ 1, 0 ≤ theta ≤ 2π, 0 ≤ ϕ ≤ π}

Flux =
∮
S

∮
F⃗ · ds⃗

=

∫ 1

0

∫ π

0

∫ 2π

0

∇ · ⟨x, y, z2⟩ρ2 sinϕdθdϕdρ

=

∫ 1

0

∫ π

0

∫ 2π

0

(2 + 2z)ρ2 sinϕdθdϕdρ

=

∫ 1

0

∫ π

0

∫ 2π

0

(2 + 2ρ sinϕ)ρ2 sinϕddd

= 2π

∫ 1

0

∫ π

0

2ρ2 sinϕ+ 2ρ3 sinϕ cosϕdϕdρ

= 4π

∫ π

0

1

3
sinϕ+

1

4
sinϕ cosϕdϕ

=
8π

3

6.4.1 Gauss’s Laws
Electric Fields

Gauss’s Law of Electricity is an important application of Divergence Theorem in physics. It says that
ΦE = Qin

ϵ0
. That is, the electric flux through a closed surface (real or hypothetical) is proportional to

the charge contained within that surface. Rewritten more formally,∮
S

∮
E⃗ · ds⃗ =

∫∫∫
V

Qin

ϵ0
dV .

So, ∫∫∫
V

∇ · E⃗dV =

∫∫∫
V

σ

ϵ0
dV

where σ is the charge density. If we let V → 0,
∇ · E⃗ =

σ

ϵ0
.

This is the differential form of Gauss’s Law and the 1st of Maxwell’s Equations.
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Magnetic Fields

Gauss’s Law for magnetism says that that magnetic flux through a closed surface is 0. Rewritten more
formally, ∮

S

∮
B⃗ · ds⃗ = 0.

So, ∫∫∫
V

∇ · B⃗dV =

∫∫∫
V

0dV .

If we let V → 0,
∇ · B⃗ = 0.

This means that there are no lone sources or sinks in magnetic fields. You may also hear this law
summarized as “There are no magnetic monopoles.” This is the 2nd of Maxwell’s Equations.

6.5 Stokes’s Theorem
Let C be a closed, counter-clockwise oriented curve in R2, and let D be the region contained within
C. Let S be an open surface with opening boundary C, and let V be the region contained inside
S̃ = D ∪ S.
[INSERT IMAGE]
Finding the flux of∇× F⃗ , ∮

S̃

∮
∇× F⃗ =

∫∫∫
V

∇ · (∇× F⃗ )dV

by Divergence Theorem. Since∇ · (∇× F⃗ ) = 0,∫∫
D

∇× F⃗dA =

∫∫
S

∇× F⃗ · ds⃗

∮
C

F⃗ · dr⃗ =
∫∫
S

∇× F⃗ · ds⃗

by Green’s Theorem for Circulation. This is Stokes’s Theorem.

For example, let’s use Stokes’s Theorem to evaluate
∫∫
S

∇× F⃗ · ds⃗ where S is the hemisphere x2 +

y2 + z2 = 4, x ≥ 0 and F⃗ (x, y, z) = ⟨yz, x sin z, xyz2⟩.

S =
{
(x, y, z) | x2 + y2 + z2 = 22, x ≥ 0

}
C =

{
(y, z) | y2 + z2 = 22

}
= {(r, θ) | r = 2, 0 ≤ θ ≤ 2π}
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where θ is in the yz-plane.

C = r⃗(t) = ⟨0, 2 cos t, 2 sin t⟩, 0 ≤ t ≤ 2π

F⃗ ◦ r⃗ = ⟨4 cos t sin t, 0, 0⟩
r⃗′(t) = ⟨0,−2 sin t, 2 cos t⟩(

F⃗ ◦ r⃗
)
· r⃗′ = 0.

So, ∫∫
S

∇× F⃗dA =

∮ 2π

0

0dt = 0

6.5.1 Faraday’s Law of Induction & Ampere’s Law
Faraday’s Law of Induction quantifies the idea that changing magnetic flux in a coil induces a current
in the coil. More precisely, it induces a voltage, the potential function of electric field

(
E⃗ = ∇V

)
,

and this field will oppose the magnetic field that induced it. More formally,

− ∂

∂t

∫∫
S

B⃗ · ds⃗ =
∮
C

E⃗ · dr⃗

−
∫∫
S

∂

∂t
B⃗ · ds⃗ =

∫∫
S

∇× E⃗ · ds⃗

by Stokes’s Theorem.
As S collapses to a point,

∇× E⃗ = − ∂

∂t
B⃗.

This is Faraday’s Law. It is the 3rd of Maxwell’s Laws.

The final of Maxwell’s Equations is Ampere’s Law (with Maxwell’s correction). It says that

∇× B⃗ = µ0ϵ0
∂e⃗

∂t
+ µ0J

where J is the current density and µ0 is the permeability of free space. Using Maxwell’s equations
and some basic properties of waves, we can derive the speed of light as c = 1√

µ0ϵ0
.
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Chapter 7

Additional Materials

7.1 Line Integral Flowchart
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7.2 Surface Integral Flowchart
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7.3 Worked Test Questions
These questions are modeled after actual exam questions a student might face in an undergraduate
multivariable calculus course. The progression of the tests roughly follows the progression of topics
covered.

7.3.1 Test 1
1. Consider two intersecting lines r⃗1(t) = ⟨2, 3, 4t⟩ and r⃗2(t) = ⟨2 + t, 3 + 2t, 0⟩. Give the

direction vector of each line. Find the equation of the plane which contains both lines. Draw
a diagram of the lines, the plane, and the relevant vectors.
The direction vector of a line is the derivative of the position vector.

• Direction 1: ⟨0, 0, 4⟩
• Direction 2: ⟨1, 2, 0⟩

A the normal vector of the plane is the cross product of the direction vectors.

• n⃗ = ⟨0, 0, 4⟩ × ⟨1, 2, 0⟩ = ⟨−8, 4, 0⟩

The lines intersect when t = 0 at (2, 3, 0). So, the plane equation is: ⟨−8, 4, 0⟩ · ⟨x − 2, y −
3, z⟩ = 0

2. Given the VVF r⃗(t)⟨10t, 7 cos t, 7 sin t⟩...

a. Compute the unit tangent vector T̂ (t) and the unit normal vector N̂(t).

T̂ =
r⃗′(t)∣∣∣∣r⃗′(t)∣∣∣∣
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r⃗′(t) = ⟨10,−7 sin t, 7 cos t⟩∣∣∣∣r⃗′(t)∣∣∣∣ =√102 + (−7 sin t)2 + (7 cos t)2 =
√
149

T̂ (t) =
1√
149

⟨10,−7 sin t, 7 cos t⟩

N̂(t) =
dT̂/dt∣∣∣∣dT̂/dt∣∣∣∣

dT̂
dt =

1√
149

⟨0,−7 cos t,−7 sin t⟩

∣∣∣∣dT̂
dt
∣∣∣∣ = 1√

149

√
(−7 cos t)2 + (−7 sin t)2 = 7√

149

N̂(t) = ⟨0,− cos t,− sin t⟩

b. Show that T̂ ⊥ N̂ for all t.
If T̂ ⊥ N̂ , then T̂ · N̂ = 0 for all t.

T̂ · N̂ =
1√
149

⟨10,−7 sin t, 7 cos t⟩ · ⟨0,− cos t,− sin t⟩

=
1√
149

(0 + 7 sin t cos t− 7 sin t cos t) = 0

=⇒ T̂ ⊥ N̂

3. A cannon fires cannonballs with a speed of 20 m/s. Take acceleration due to gravity to be
g = 10m/s2.

a. Starting with a constant acceleration function a⃗ = ⟨0,−g⟩, find the velocity and position
functions (r⃗′(t) and r⃗(t) respectively) of the cannonball if the cannon is fired from an
angle θ with respect to the horizontal. Assume the cannonball is initially positioned at the
origin.
We know that velocity is the integral of acceleration.

v⃗(t) = r⃗′(t) = ⟨c1, c2 − gt⟩.

We are given that the initial speed is 20 m/s at an angle θ.

v⃗0 = 20⟨cos θ, sin θ⟩

v⃗(t) = ⟨20 cos θ, 20 sin θ − gt⟩.
We know that position is the integral of velocity.

r⃗(t) = ⟨20t cos θ + c1, 20t sin θ −
1

2
gt2 + c2⟩.
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We are given that the cannonball starts at the origin.

r⃗(t) = ⟨20t cos θ, 20t sin θ − 1

2
gt2⟩.

Taking g = 10m/s2,

r⃗(t) = ⟨20t cos θ, 20t sin θ − 5t2⟩

b. What angle θ should the cannon be fired to hit a target on the ground at a distance 40 m
away?
We want to find a point on the trajectory where y = 0 and x = 40. y = 0 when
t = 0, 4 sin θ. We can reasonably eliminate t = 0 because this is when the cannon first
fires and x = 0.
Plugging in t = 4 sin θ to the x-component of position when x = 40,

20 cos θ · 4 sin θ = 40

2 sin θ cos θ = 1

sin (2θ) = 1, 2θ = π/2

=⇒ θ = π/4

4. Consider the following particle trajectory: r⃗(t) = ⟨R cos et, R sin et, h
2π
et⟩ for t ≥ 0. The

shape of the trajectory is a helix with radius R and vertical spacing h. Find the arc length
function s(t) of the trajectory starting with s(0) = 0. Give the arc length reparameterization
of the helix.

s(t) =

∫ t

0

∣∣∣∣r⃗′(τ)∣∣∣∣dτ
r⃗′(t) = ⟨−Ret sin et, Ret cos et, h

2π
et⟩

∣∣∣∣r⃗′(t)∣∣∣∣ =√(−Ret sin et)2 + (Ret cos et)2 + (
h

2π
et)2

= et
√

R2 +
h2

4π2

s(t) =

∫ t

0

eτ
√

R2 +
h2

4π2
dτ =

√
R2 +

h2

4π2
(et − 1).

Solving for t,

t = ln

 s√
R2 + h2

4π2

+ 1


r⃗(s) =

〈
R cos

 s√
R2 + h2

4π2

+ 1

, R sin

 s√
R2 + h2

4π2

+ 1

,
h

2π

 s√
R2 + h2

4π2

+ 1

〉

84



5. Let r⃗(t) be the position function of a particle trapped on the surface of a sphere centered at the
origin. Show that r⃗(t) ⊥ d

dt r⃗(t) for all t.
Since r⃗(t) is on a sphere,

∣∣∣∣r⃗(t)∣∣∣∣ = R and r⃗(t) · r⃗(t) = R2.

d
dt(r⃗(t) · r⃗(t)) = 2r⃗(t) · r⃗′(t)

d
dt(r⃗(t) · r⃗(t)) =

d
dtR

2 = 0.

So,
2r⃗(t) · r⃗′(t) = 0

and
r⃗(t) · r⃗′(t) = 0

=⇒ r⃗(t) ⊥ r⃗′(t)

7.3.2 Test 2
1. Consider the function f(x, y) = x2 − 2x+ y2 − 4y + 7.

a. Find equations for an plot (if possible) the C-level curves of f for C = 3 and C = 1.
We will try to find the level curve for any C and then plug in 1 and 3.

x2 − 2x+ y2 − 4y + 7 = Cx2 − 2x+ 1 + y2 − 4y + 4 = C − 2(x− 1)2 + (y − 2)2 = C − 2.

A circle of radius
√
C − 2 centered at (1, 2). For C = 1, the level curve does not exist

because the circle would have a radius of
√
2− 1 =

√
−1. For C = 3, the level curve is

(x− 1)2 + (y − 2)2 = 1

b. Compute∇f .
∇f = ⟨fx, fy⟩ = ⟨2x− 2, 2y − 4⟩
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c. Find the equation of the plane tangent to the surface z = f(x, y) at the point (x0, y0, z0) =
(2, 4, 7).

n⃗ = ⟨fx, fy,−1⟩ = ⟨2x− 2, 2y − 4,−1⟩.
At (2, 4, 7), n⃗ = ⟨2, 7,−1⟩. So, the plane equation is

⟨2, 7,−1⟩ · ⟨x− 2, y − 4, z − 7⟩ = 0

d. Perform one iteration of gradient descent on f(x, y) with a learning rate delta = 1/4
starting from the point (x0, y0) = (2, 4).

(xn, yn) = (xn−1, yn−1)− δ∇f

(x0, y0) = (2, 4), δ = 1/4, and∇f = ⟨2x− 2, 2y − 4⟩

(x1, y1) = (2, 4)− 1

4
⟨2(2)− 2, 2(4)− 4⟩

= (3/2, 3)

2. Recall that for a differentiable function f(x, y) and the unit vector û = ⟨a, b⟩, we proved that
Dûf = ∇f · û.

a. Prove the statement “The gradient is the direction of steepest ascent” by showing that the
directional derivative Dûf is maximized when û ∥ ∇f .

Dûf = ∇f · û =
∣∣∣∣∇f

∣∣∣∣∣∣∣∣û∣∣∣∣ cos θ =
∣∣∣∣∇f

∣∣∣∣ cos θ.
This value is maximized when θ is a multiple of 2π, meaning that the angle between∇f
and û is 0. This means that the maximum value of the directional derivative, the direction
of steepest ascent, is in the same direction as ∇f .

b. State the limit definition of the directional derivative Dûf . Starting from that definition,
prove that Dûf = ∇f · û.

Dûf = lim
h→0

f(x+ ah, y + bh)

h
andû = ⟨a, b⟩

= lim
h→0

f(x+ ah, y + bh)− f(x+ ah, y)

h
+

f(x+ ah, y)− f(x, y)

h

= b lim
h→0

f(x, y + bh)− f(x, y)

bh
+ a lim

h→0

f(x+ ah, y)− f(x, y)

ah
= bfy + afx = ⟨fx, fy⟩ · ⟨a, b⟩ = ∇f · û

3. Use the method of Lagrange Multipliers to find the maximum of the product of two numbers
x and y given that (x, y) is a coordinate pair in the 1st quadrant located on the unit circle cen-
tered at the origin. Begin by stating the objective function f(x, y) and the constraint equation
g(x, y) = k.
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• Objective Function: f(x, y) = xy

• Constraint Equation: g(x, y) = x2 + y2 = 1, x ≥ 0 and y ≥ 0

F (x, y, λ) = xy + λ(1− x2 − y2)

∂F

∂x
= y − 2λx,

∂F

∂y
= x− 2λy and ∂F

∂λ
= 1− x2 − y2

⟨y − 2λx, x− 2λy, 1− x2 − y2⟩ = 0⃗
y = 2λx

x = 2λy

x2 + y2 = 1

=⇒


λ = 1/2

x = 1/
√
2

y = 1/
√
2

.

So, the maximum product is 1√
2
· 1√

2
= 1

2
at
(

1√
2
, 1√

2

)
4. The function p(x, y) = 1

π
exp (−(x− a)2 − (y − b)2) is the probability density function of a

bivariate normal distribution with mean (a, b) and standard deviation 1√
2
. Show that the global

maximum of p(x, y) occurs at (a, b).

px =
1

π
(−2(x− a)) exp (−((x− a)2 + (y − b)2))

py =
1

π
(−2(y − b)) exp (−((x− a)2 + (y − b)2))

px = 0 when x = a and py = 0 when y = b =⇒ (a, b) is a critical point.

pxx =
1

π
(−2(y − b)) exp (−((x− a)2 + (y − b)2))− 2 exp (−((x− a)2 + (y − b)2))

=
1

π
(4(x− a)2 − 2) exp (−((x− a)2 + (y − b)2))

pyy =
1

π
(4(y − b)2 − 2) exp (−((x− a)2 + (y − b)2))

pxy = pyx =
4

π
(x− a)(y − b) exp (−((x− a)2 + (y − b)2))

pxx(a, b) =
−2

π
, pyy(a, b) =

−2

π
and pxy(a, b) = pyx(a, b) = 0

H(a, b) =

[−2
π

0
0 −2

π

]
det (H(a, b)) =

4

π2

(a, b) is an extrema because det (H(a, b)) > 0. Since fxx(a, b) < 0 and fyy(a, b) < 0, (a, b)
is a maximum. (a, b) is a global maximum because p(x, y) is strictly decreasing as you move
away from (a, b).
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5. Let the C-level curve of the function f(x, y) be parameterized by the VVF r⃗(t) = ⟨x(t), y(t)⟩.
Use the chain rule to show that∇f(r⃗(t)) ⊥ r⃗′(t) for all t.
Since r⃗(t) parameterizes a C-level curve of f ,

f ◦ r⃗(t) = C.

Where C is a constant.
d
dt(f ◦ r⃗(t)) = d

dtC

∂f

∂x

dx
dt +

∂f

∂y

dy
dt = 0〈

∂f

∂x
,
∂f

∂y

〉
·
〈dx
dt ,

dy
dt

〉
= 0

∇f(r⃗(t)) · r⃗′(t) = 0

=⇒ ∇f(r⃗(t)) ⊥ r⃗′(t)

7.3.3 Test 3
1. Evaluate each of the following integrals as they appear or by changing coordinate systems.

Sketch and/or describe the region geometrically to help in choosing an appropriate coordinate
system.

a. ∫ 3

0

∫ 2

0

∫ 1

0

zex+y+z2dxdydx.

We can use a simple u-substitution.

u = z2 + x+ y, du = 2zdz

I =

∫ 3

0

∫ 2

0

∫ x+y+1

x+y

1

2
eududydx

=
1

2

∫ 3

0

∫ 2

0

ex+y+1 − ex+ydydx

=
1

2

∫ 3

0

(
(e3+x − e2+x)− (e1+x − ex)

)
dx

=
1

2
(e6 − e5 − e4 + e2 + e− 1)

b. ∫ √
2

0

∫ √
2−x2

−
√
2−x2

∫ 5

0

zdzdydx.
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The region we are integrating is a half-cylinder, so we will use cylindrical coordinates.

I =

∫ π/2

−π/2

∫ √
2

0

∫ 5

0

rzdzdrdθ

= π

∫ √
2

0

rdr ·
∫ 5

0

zdz

= π

(√
2
2

2
− 02

2

)
·
(
52

2
− 02

2

)
=

25π

2

c. ∫ 3

−3

∫ √
9−x2

0

∫ √
9−x2−y2

0

zdzdydx.

The region we are integrating is a quarter sphere, so we will use spherical coordinates.

I =

∫ 3

0

∫ π

0

∫ π/2

0

ρ2 sinϕ cosϕdϕdθdρ

=

∫ 3

0

ρ3dρ ·
∫ π

0

dθ ·
∫ π/2

0

sinϕ cosϕdϕ

=
34

4
· π · 1

2
=

81π

8

2. Let Ω ⊂ R3 be a spherical ball of radiusR centered at the origin. Set up and evaluate
∫∫∫
Ω

dV .
Since we are finding the volume of a ball, we’ll use spherical coordinates.

dV = ρ2 sinϕdρdθdϕ

I =

∫ R

0

∫ 2π

0

∫ π

0

ρ2 sinϕdϕdθdρ

=

∫ R

0

ρ2dρ ·
∫ 2π

0

dθ ·
∫ π

0

sinϕdϕ

=
R3

3
· 2π · 2 =

4π

3
R3

3. A plane lamina with density σ(x, y) =
√
x2 + y2 occupies the region D, the region bounded

by the Archimedian spiral r = θ and the half line θ = α, r ≥ 0, where α is an unknown angle
in radians. Find α such that the average density σ̄ of the lamina is π/2.

σ̄ =

∫∫
D

σdA∫∫
D

dA =
π

2
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D = {(r, θ) | 0 ≤ θ ≤ α, 0 ≤ r ≤ θ} , σ(r, θ) = r

σ̄ =

∫ α

0

∫ θ

0
r2drdθ∫ α

0

∫ θ

0
rdrdθ

=

∫ α

0
θ3

3
dθ∫ α

0
θ2

2
dθ

=
α4/12

α3/6
=

α

2
α

2
=

π

2
=⇒ α = π

4. Consider the 2D Gaussian function f(x, y) = e−(x2+y2). Evaluate
∫∫
D

f(x, y)dA, where D is

a disk of radius a centered at the origin. Use the results to evaluate
∫∫
R2

f(x, y)dA.

D = {(r, θ) | 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π}

f(x, y) = exp (−x2 − y2) = exp (−r2)

∫∫
D

f(x, y)dA =

∫ 2π

0

∫ a

0

e−r2rdrdθ

=

∫ 2π

0

dθ · −1

2

∫ −a2

0

eudu

= 2π · −1

2
·
(
e−a2 − 1

)
= π

(
1− e−a2

)
∫∫
R2

f(x, y)dA = lim
a→∞

π
(
1− e−a2

)
= π

7.3.4 Test 4
1. For each of the following, determine if F⃗ is conservative. Then evaluate

∫
C

F⃗ · dr⃗.

a. F⃗ = ⟨xz, x2z, xy2z⟩ and C given by r⃗(t) = ⟨t, e−t, et⟩, 0 ≤ t ≤ 1.

∇× F⃗ = ⟨2xyz − x2, x− y2z, 2xz⟩.
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Since∇× F⃗ ̸= 0⃗, F⃗ isn’t conservative.

F⃗ ◦ r⃗ = ⟨tet, t2et, te−2tet⟩
= r⃗′(t) = ⟨1,−e−t, et⟩(

F⃗ ◦ r⃗
)
· r⃗′(t) = tet − t2 + t

∫
C

F⃗ · dr⃗ =
∫ 1

0

(
tet − t2 + t

)
dt

=
1

2
− 1

3
+ |tet|10 −

∫ 1

0

etdt

= 1 +
1

2
− 1

3
=

7

6

b. F⃗ =

〈√
yz
x
,
√

xz
y
,
√

xy
z

〉
and C given by r⃗ = ⟨cos t, sin t, sin (4t)⟩, 0 ≤ t ≤ 2π.

F⃗ = ∇(2
√
xyz) =⇒ F⃗ is conservative.

r⃗(0) = r⃗(2π) =⇒ C is a circulation..
Since F⃗ is conservative and C is a circulation,∮

C

F⃗ · dr⃗ = 0.

c. F⃗ = ⟨yz, xz, xy⟩ and C given by r⃗(t) = ⟨2t2, e1−t2 , tan−1 (t2/2)⟩, 0 ≤ t ≤
√
2.

F⃗ = ∇(xyz) =⇒ F⃗ is conservative.∫
C

F⃗ · dr⃗ =
∫
C

∇f · dr⃗ = f(r⃗(
√
2))− f(r⃗(0)) =

4π

4e
− 0 =

π

e

2. Let the surface S be the portion of the paraboloid z = 8− x2

2
− y2

2
that lies above the xy-plane.

Let F⃗ (x, y, z) =

〈
x√

x2+y2
, y√

x2+y2
, 0

〉
.

a. Parameterize S = r⃗(u, v) with appropriate bounds for u and v. The paraboloid is above
the xy-plane when z ≥ 0.

8− x2

2
− y2

2
=≥ 0

x2 + y2 ≤ 16.
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This a circle with radius 4. So, we’ll describe the region in polar form.

S = {(r, θ) | 0 ≤ r ≤ 4, 0 ≤ θ ≤ 2π}

r⃗(u, v) = ⟨u cos v, u sin v, 8− 1

2
u2⟩, 0 ≤ u ≤ 4 and 0 ≤ v ≤ 2π

b. Compute the surface area of S.

A =

∫∫
D

∣∣∣∣r⃗u × r⃗v
∣∣∣∣dA

r⃗u = ⟨cos v, sinu,−u⟩

vecrv = ⟨−u sin v, u cos v, 0⟩
r⃗u × r⃗v = ⟨u2 cos v, u2 sin v, u⟩∣∣∣∣r⃗u × r⃗v

∣∣∣∣ = u
√
1 + u2

A =

∫ 2π

0

int40u
√
1 + u2dudv

= 2π

∫ 4

0

u
√
1 + u2du

= π

∫ 17

1

√
wdw

= π
34
√
17− 2

3

c. Compute the flux, Φ, of F⃗ through S.
We will assume that the surface is outward-oriented, so that Φ is positive.

Φ =

∫∫
D

(
F⃗ ◦ r⃗

)
· (r⃗u × r⃗v) dA

F⃗ ◦ r⃗ = ⟨cos v sin v, 0⟩(
F⃗ ◦ r⃗

)
· (r⃗u × r⃗v) = u2

Φ =

∫ 2π

0

∫ 4

0

u2dudv

=
128π

3
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3. Consider a 3D vector field F⃗ (x, y, z) = ⟨P (x, y, z), Q(x, y, z), R(x, y, z)⟩ and a scalar func-
tion of two variables f(x, y). Determine which of the following expressions is defined. If it
is defined, evaluate it. If it is not defined, explain why. If you can deduce the value of the
expression from a theorem, do so and state the theorem.

a.
∇f · F⃗ .

This operation is not defined because ∇f is a 2D vector, and the output of F⃗ is a 3D
vector.

b.
∇×∇f.

If we allow the cross product in 2D to return a scalar that is the signed area spanned by
the two vectors, then

∇×∇f = fyx − fxy = 0

c.
∇× (∇ · F⃗ ).

This operation is not defined because∇ · F⃗ results in a scalar function, and the curl of a
scalar function is not defined.

d.
∇ · (∇× F⃗ ).

This operation is defined and always has a value of 0 if F⃗ is twice differentiable. The
proof of which is below.
Let

F⃗ (x, y, z) = ⟨P (x, y, z), Q(x, y, z), R(x, y, z)⟩

∇ · (∇× F⃗ ) = ∇ · ⟨Ry −Qz, Pz −Rx, Qx − Py⟩
= Ryx −Qzx + Pzy −Rxy +Qxz − Pyz = 0

by Fubini’s Theorem

4. Consider the vector field F⃗ (x, y, z) = ⟨−z, 2y, x⟩. Find the integral curve of F⃗ with initial
conditions r⃗(0) = ⟨5, 1, 0⟩.
We need to solve a system of differential equations.

x′ = −z

y′ = 2y

z′ = x
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y(t) = Ce2t and applying initial conditions, y(t) = e2t{
x′ = −z

z′ = x

z(t) = A cos t+B sin t and x(t) = B cos t− A sin t
Applying initial conditions, z(t) = 5 sin t and x(t) = 5 cos t. So,

r⃗(t) = ⟨5 cos t, e2t, 5 sin t⟩

5. State and prove the Fundamental Theorem of Calculus for Line Integrals.

Theorem (FTC for Line Integrals). Let r⃗(t) parameterize C on a ≤ t ≤ b.∫
C

∇f · dr⃗ = f(r⃗(b))− f(r⃗(a))

Proof. ∫
C

∇f · dr⃗ =
∫ b

a

(∇f ◦ r⃗) · r⃗′dt

=

∫ b

a

d
dt(f ◦ r⃗)dt

= f(r⃗(b))− f(r⃗(a))

■

7.4 Online Resources
• Khan Academy - Multivariable Calculus

• Paul’s Online Notes - Calc III

• PatrickJMT - Calculus / Third Semester / Multivariable Calculus

• MIT OpenCourseWare - Multivariable Calculus

• Stewart - Single and Multivariable Calculus
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